22 resultados para inner prosthesis loading

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the role of local government in urban regeneration in England. The first part describes local-central government relations during recent decades. It concludes that 'actually occurring' regeneration fuses top-down and bottom-up priorities and preferences, as well as path dependencies created by past decisions and local relations. The second part illustrates this contention by examining the regeneration of inner-city Salford over a 25-year period. It describes Salford City Council's approach in achieving the redevelopment of the former Salford Docks and how this created the confidence for the council to embark on further regeneration projects. Yet the top-down decision-making model has failed to satisfy local expectations, creating apathy which threatens the Labour government's desire for active citizens in regeneration projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothesis: The aim of this study was to measure the mass loading effect of an active middle-ear implant (the Vibrant Soundbridge) in cadaver temporal bones. Background: Implantable middle ear hearing devices such as Vibrant Soundbridge have been used as an alternative to conventional hearing aids for the rehabilitation of sensorineural hearing loss. Other than the obvious disadvantage of requiring implantation middle ear surgery, it also applies a direct weight on the ossicular chain which, in turn, may have an impact on residual hearing. Previous studies have shown that applying a mass directly on the ossicular chain has a damping effect on its response to sound. However, little has been done to investigate the magnitude and the frequency characteristics of the mass loading effect in devices such as the Vibrant Soundbridge. Methods: Five fresh cadaver temporal bones were used. The stapes displacement was measured using laser Doppler vibrometry before and after the placement of a Vibrant Sound-bridge floating mass transducer. The effects of mass and attachment site were compared with the unloaded response. Measurements were obtained at frequencies between 0.1 and 10 kHz and at acoustic input levels of 100 dB sound pressure level. Each temporal bone acted as its own control. Results: Placement of the floating mass transducer caused a reduction of the stapes displacement. There were variations between the bones. The change of the stapes displacement varied from 0 dB to 28 dB. The effect was more prominent at frequencies above 1,000 Hz. Placing the floating mass transducer close to the incudostapedial joint reduced the mass loading effect. Conclusion: The floating mass transducer produces a measurable reduction of the stapes displacement in the temporal bone model. The effect is more prominent at high frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m(-2) for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m(-2) for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy-time curves of loading-unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper specifically examines the implantation of a microelectrode array into the median nerve of the left arm of a healthy male volunteer. The objective was to establish a bi-directional link between the human nervous system and a computer, via a unique interface module. This is the first time that such a device has been used with a healthy human. The aim of the study was to assess the efficacy, compatibility, and long term operability of the neural implant in allowing the subject to perceive feedback stimulation and for neural activity to be detected and processed such that the subject could interact with remote technologies. A case study demonstrating real-time control of an instrumented prosthetic hand by means of the bi-directional link is given. The implantation did not result in infection, and scanning electron microscope images of the implant post extraction have not indicated significant rejection of the implant by the body. No perceivable loss of hand sensation or motion control was experienced by the subject while the implant was in place, and further testing of the subject following the removal of the implant has not indicated any measurable long term defects. The implant was extracted after 96 days. Copyright © 2004 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present an economical and versatile platform for developing motor control and sensory feedback of a prosthetic hand via in vitro mammalian peripheral nerve activity. In this study, closed-loop control of the grasp function of the prosthetic hand was achieved by stimulation of a peripheral nerve preparation in response to slip sensor data from a robotic hand, forming a rudimentary reflex action. The single degree of freedom grasp was triggered by single unit activity from motor and sensory fibers as a result of stimulation. The work presented here provides a novel, reproducible, economic, and robust platform for experimenting with neural control of prosthetic devices before attempting in vivo implementation.