43 resultados para infrared absorbance spectra

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments and on field trials. These emission spectra were obtained using an adapted FTIR spectrometer with 0.25 cm-1 spectral resolution. The CO2 and H2O vapour content in the plume from a 55 m smoke stack and the temperature of these gases were obtained by comparing the measured emission spectra with those modelled using the HITRAN atmospheric transmission database. The spatial distributions of CO2, CO and unburnt CH4 in a laboratory methane flame were reconstructed tomographically using a matrix inversion technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimentally and theoretically determined infrared spectra are reported for a series of straight-chain perfluorocarbons: C2F6, C3F8, C4F10, C5F12, C6F14, and C8F18. Theoretical spectra were determined using both density functional (DFT) and ab initio methods. Radiative efficiencies (REs) were determined using the method of Pinnock et al. (1995) and combined with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). Theoretically determined absorption cross sections were within 10% of experimentally determined values. Despite being much less computationally expensive, DFT calculations were generally found to perform better than ab initio methods. There is a strong wavenumber dependence of radiative forcing in the region of the fundamental C-F vibration, and small differences in wavelength between band positions determined by theory and experiment have a significant impact on the REs. We apply an empirical correction to the theoretical spectra and then test this correction on a number of branched chain and cyclic perfluoroalkanes. We then compute absorption cross sections, REs, and GWPs for an additional set of perfluoroalkenes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CFC-113a (CF3CCl3), CFC-112 (CFCl2CFCl2) and HCFC-133a (CF3CH2Cl) are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP). The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012) concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100), are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work was to study the effects of drying methods and conditions (i.e., ambient drying, hot air drying at 40 degrees C, vacuum drying and low-pressure superheated steam drying within the temperature range of 70-90 degrees C at an absolute pressure of 10 kPa) as well as the concentration of galangal extract on the antimicrobial activity of edible chitosan films against Staphylococcus aureus. Galangal extract was added to the film forming solution as a natural antimicrobial agent in the concentration range of 0.3-0.9 g/100 g. Fourier transform infrared (FTIR) spectra and swelling of the films were also evaluated to investigate interaction between chitosan and the galangal extract. The antimicrobial activity of the films was evaluated by the disc diffusion and viable cell count method, while the morphology of bacteria treated with the antimicrobial films was observed via transmission electron microscopy (TEM). The antimicrobial activity, swelling and functional group interaction of the antimicrobial films were found to be affected by the drying methods and conditions as well as the concentration of the galangal extract. The electron microscopic observations revealed that cell wall and cell membrane of S. aureus treated by the antimicrobial films were significantly damaged. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface pressure measurements, external reflection- Fourier transform infrared spectroscopy, and neutron re. flectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol3-( phosphor-rac-( 1- glycerol)) ( DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocholine ( DPPC). All three peptides have been shown to penetrate DPPC lipid layers by surface pressure, and this was confirmed for the melittin-DPPC interaction by neutron reflectivity measurements. Adsorption of peptide was, however, minimal, with a maximum of 0.4 mg m(-2) seen for melittin adsorption compared to 2.1 mg m(-2) for adsorption to DPPG ( from 0.7 mu M solution). The mode of binding to DPPG was shown to depend on the distribution of basic residues within the peptide alpha-helix, although in all cases adsorption below the lipid layer was shown to dominate over insertion within the layer. Melittin adsorption to DPPG altered the lipid layer structure observed through changes in the external reflection-Fourier transform infrared lipid spectra and neutron reflectivity. This lipid disruption was not observed for magainin or cecropin. In addition, melittin binding to both lipids was shown to be 50% greater than for either magainin or cecropin. Adsorption to the bare air-water interface was also investigated and surface activity followed the trend melittin. magainin. cecropin. External re. ection- Fourier transform infrared amide spectra revealed that melittin adopted a helical structure only in the presence of lipid, whereas magainin and cecropin adopted helical structure also at an airwater interface. This behavior has been related to the different charge distributions on the peptide amino acid sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sub)picosecond transient absorption (TA) and time-resolved infrared (TRIR) spectra of the cluster [OS3(CO)(10-) (AcPy-MV)](2+) (the clication AcPy-MV = Acpy-MV2+ = [2-pyridylacetimine-N-(2-(1'-methyl-4,4'-bipyridine-1,1'-diium-1-yl) ethyl)] (PF6)(2)) (1(2+)) reveal that photoinduced electron transfer to the electron-accepting 4,4'-bipyridine-1,1'diium (MV2+) moiety competes with the fast relaxation of the initially populated sigmapi* excited state of the cluster to the ground state and/or cleavage of an Os-Os bond. The TA spectra of cluster 12 in acetone, obtained by irradiation into its lowest-energy absorption band, show the characteristic absorptions of the one-electron-reduced MV*(+) unit at 400 and 615 nm, in accordance with population of a charge-separated (CS) state in which a cluster-core electron has been transferred to the lowest pi* orbital of the remote MV2+ unit. This assignment is confirmed by picosecond TRIR spectra that show a large shift of the pilot highest-frequency nu(CO) band of 1(2+) by ca. +40 cm(-1), reflecting the photooxidation of the cluster core. The CS state is populated via fast (4.2 x 10(11) s(-1)) and efficient (88%) oxidative quenching of the optically populated sigmapi* excited state and decays biexponentially with lifetimes of 38 and 166 ps (1:2:1 ratio) with a complete regeneration of the parent cluster. About 12% of the cluster molecules in the sigmapi* excited state form long-lived open-core biradicals. In strongly coordinating acetonitrile, however, the cluster core-to-MV2+ electron transfer in cluster 12+ results in the irreversible formation of secondary photoproducts with a photooxidized cluster core. The photochemical behavior of the [Os-3(CO)(10)(alpha-diimine-MV)](2+) (donor-acceptor) dyad can be controlled by an externally applied electronic bias. Electrochemical one-electron reduction of the MV2+ moiety prior to the irradiation reduces its electron-accepting character to such an extent that the photoinduced electron transfer to MV*+ is no longer feasible. Instead, the irradiation of reduced cluster 1(.)+ results in the reversible formation of an open-core zwitterion, the ultimate photoproduct also observed upon irradiation of related nonsubstituted clusters [Os-3(CO)(10)(alpha-diimine)] in strongly coordinating solvents such as acetonitrile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the mid-1970s it was recognized that, as well as being substances that deplete stratospheric ozone, chlorofluorocarbons (CFCs) were strong greenhouse gases that could have substantial impacts on radiative forcing of climate change. Around a decade later, this group of radiatively active compounds was expanded to include a large number of replacements for ozone-depleting substances such as chlorocarbons, hydrochlorocarbons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), bromofluorocarbons, and bromochlorofluorocarbons. This paper systematically reviews the published literature concerning the radiative efficiencies (REs) of CFCs, bromofluorocarbons and bromochlorofluorocarbons (halons), HCFCs, HFCs, PFCs, SF6, NF3, and related halogen containing compounds. In addition we provide a comprehensive and self-consistent set of new calculations of REs and global warming potentials (GWPs) for these compounds, mostly employing atmospheric lifetimes taken from the available literature. We also present Global Temperature change Potentials (GTPs) for selected gases. Infrared absorption spectra used in the RE calculations were taken from databases and individual studies, and from experimental and ab initio computational studies. Evaluations of REs and GWPs are presented for more than 200 compounds. Our calculations yield REs significantly (> 5%) different from those in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) for 49 compounds. We present new RE values for more than 100 gases which were not included in AR4. A widely-used simple method to calculate REs and GWPs from absorption spectra and atmospheric lifetimes is assessed and updated. This is the most comprehensive review of the radiative efficiencies and global warming potentials of halogenated compounds performed to date.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We measure infrared absorption spectra of 18 hydrochlorofluorocarbons and hydrofluorocarbons, seven of which do not yet appear in the literature. The spectra are used in a narrowband model of the terrestrial infrared radiation to calculate radiative forcing and global warming potentials. We investigate the sensitivity of the radiative forcing to the absorption spectrum temperature dependence, halocarbon vertical profile, stratospheric adjustment, cloudiness, spectral overlap, and latitude, and we make some recommendations for the reporting of radiative forcings that would help to resolve discrepancies between assessments. We investigate simple methods of estimating instantaneous radiative forcing directly from a molecule's absorption spectrum and we present a new method that agrees to within 0.3% with our narrowband model results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Infrared spectra of thoformaldehyde, H2CS and D2CS, were observed in the gas phase at a resolution of better than 0.1 cm−1 from 4000 to 400 cm−1 using a Nicolet FTIR system. Vibrational band origins and rotational constants were determined for ν2, ν3, ν4, and ν6 of H2CS and for ν1, ν2, ν3, ν4, and ν6 of D2CS. The ν3, ν4, and ν6 bands of H2CS were analyzed as a set of three Coriolis interacting bands, and three Coriolis constants were determined; similarly the ν4 and ν6 bands of D2CS were analyzed as a pair of interacting bands and one Coriolis constant was determined. A general harmonic force field was determined, without constraints, to fit the vibrational wavenumbers, Coriolis constants, and centrifugal distortion constants. A zero-point (rz) structure was determined from the ground-state rotational constants, and the equilibrium (re) bond lengths were estimated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas phase vibrational spectra of BrHI- and BrDI- have been measured from 6 to 17 mum (590-1666 cm-1) using tunable infrared radiation from the free electron laser for infrared experiments in order to characterize the strong hydrogen bond in these species. BrHI-.Ar and BrDI-.Ar complexes were produced and mass selected, and the depletion of their signal due to vibrational predissociation was monitored as a function of photon energy. Additionally, BrHI- and BrDI- were dissociated into HBr (DBr) and I- via resonant infrared multiphoton dissociation. The spectra show numerous transitions, which had not been observed by previous matrix studies. New ab initio calculations of the potential-energy surface and the dipole moment are presented and are used in variational ro-vibrational calculations to assign the spectral features. These calculations highlight the importance of basis set in the simulation of heavy atoms such as iodine. Further, they demonstrate extensive mode mixing between the bend and the H-atom stretch modes in BrHI- and BrDI- due to Fermi resonances. These interactions result in major deviations from simple harmonic estimates of the vibrational energies. As a result of this new analysis, previous matrix-isolation spectra assignments are reevaluated. (C) 2004 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular structures of NbOBr3, NbSCl3, and NbSBr3 have been determined by gas-phase electron diffraction (GED) at nozzle-tip temperatures of 250 degreesC, taking into account the possible presence of NbOCl3 as a contaminant in the NbSCl3 sample and NbOBr3 in the NbSBr3 sample. The experimental data are consistent with trigonal-pyramidal molecules having C-3v symmetry. Infrared spectra of molecules trapped in argon or nitrogen matrices were recorded and exhibit the characteristic fundamental stretching modes for C-3v species. Well resolved isotopic fine structure (Cl-35 and Cl-37) was observed for NbSCl3, and for NbOCl3 which occurred as an impurity in the NbSCl3 spectra. Quantum mechanical calculations of the structures and vibrational frequencies of the four YNbX3 molecules (Y = O, S; X = Cl, Br) were carried out at several levels of theory, most importantly B3LYP DFT with either the Stuttgart RSC ECP or Hay-Wadt (n + 1) ECP VDZ basis set for Nb and the 6-311 G* basis set for the nonmetal atoms. Theoretical values for the bond lengths are 0.01-0.04 Angstrom longer than the experimental ones of type r(a), in accord with general experience, but the bond angles with theoretical minus experimental differences of only 1.0-1.5degrees are notably accurate. Symmetrized force fields were also calculated. The experimental bond lengths (r(g)/Angstrom) and angles (angle(alpha)/deg) with estimated 2sigma uncertainties from GED are as follows. NbOBr3: r(Nb=O) = 1.694(7), r(Nb-Br) = 2.429(2), angle(O=Nb-Br) = 107.3(5), angle(Br-Nb-Br) = 111.5(5). NbSBr3: r(Nb=S) = 2.134(10), r(Nb-Br) = 2.408(4), angle(S=Nb-Br) = 106.6(7), angle(Br-Nb-Br) = 112.2(6). NbSCl3: Nb=S) = 2.120(10), r(Nb-Cl) = 2.271(6), angle(S=Nb-Cl) = 107.8(12), angle(Cl-Nb-Cl) = 111.1(11).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The binding of NO to iron is involved in the biological function of many heme proteins. Contrary to ligands like CO and O-2, which only bind to ferrous (Fe-II) iron, NO binds to both ferrous and ferric (Fe-II) iron. In a particular protein, the natural oxidation state can therefore be expected to be tailored to the required function. Herein, we present an ob initio potential-energy surface for ferric iron interacting with NO. This potential-energy surface exhibits three minima corresponding to eta'-NO coordination (the global minimum), eta(1)-ON coordination and eta(2) coordination. This contrasts with the potential-energy surface for Fe-II-NO, which ex- hibits only two minima (the eta(2) coordination mode for Fe-II is a transition state, not a minimum). In addition, the binding energies of NO are substantially larger for Fe-III than for Fe-II. We have performed molecular dynamics simulations for NO bound to ferric myoglobin (Mb(III)) and compare these with results obtained for Mb(II). Over the duration of our simulations (1.5 ns), all three binding modes are found to be stable at 200 K and transiently stable at 300 K, with eventual transformation to the eta(1)-NO global-minimum conformation. We discuss the implication of these results related to studies of rebinding processes in myoglobin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present molecular dynamics simulations of the photodissociated state of MbNO performed at 300 K using a fluctuating charge model for the nitric oxide (NO) ligand. After dissociation, NO is observed to remain mainly in the centre of the distal haem pocket, although some movement towards the primary docking site and the xenon-4 pocket can be seen. We calculate the NO infrared spectrum for the photodissociated ligand within the haem pocket and find a narrow peak in the range 1915-1922 cm(-1). The resulting blue shift of 1 to 8 cm(-1) compared to gas-phase NO is much smaller than the red shifts calculated and observed for carbon monoxide (CO) in Mb. A small splitting, due to NO in the xenon-4 pocket, is also observed. At lower temperatures, the spectra and conformational space explored by the ligand remain largely unchanged, but the electrostatic interactions with residue His64 become increasingly significant in determining the details of the ligand orientation within the distal haem pocket. The investigation of the effect of the L29F mutation reveals significant differences between the behaviour of NO and that of CO, and suggests a coupling between the ligand and the protein dynamics due to the different ligand dipole moments.