7 resultados para information pattern
em CentAUR: Central Archive University of Reading - UK
Resumo:
Information systems for business are frequently heavily reliant on software. Two important feedback-related effects of embedding software in a business process are identified. First, the system dynamics of the software maintenance process can become complex, particularly in the number and scope of the feedback loops. Secondly, responsiveness to feedback can have a big effect on the evolvability of the information system. Ways have been explored to provide an effective mechanism for improving the quality of feedback between stakeholders during software maintenance. Understanding can be improved by using representations of information systems that are both service-based and architectural in scope. The conflicting forces that encourage change or stability can be resolved using patterns and pattern languages. A morphology of information systems pattern languages has been described to facilitate the identification and reuse of patterns and pattern languages. The kind of planning process needed to achieve consensus on a system's evolution is also considered.
Resumo:
We present a method to enhance fault localization for software systems based on a frequent pattern mining algorithm. Our method is based on a large set of test cases for a given set of programs in which faults can be detected. The test executions are recorded as function call trees. Based on test oracles the tests can be classified into successful and failing tests. A frequent pattern mining algorithm is used to identify frequent subtrees in successful and failing test executions. This information is used to rank functions according to their likelihood of containing a fault. The ranking suggests an order in which to examine the functions during fault analysis. We validate our approach experimentally using a subset of Siemens benchmark programs.
Resumo:
During locomotion, retinal flow, gaze angle, and vestibular information can contribute to one's perception of self-motion. Their respective roles were investigated during active steering: Retinal flow and gaze angle were biased by altering the visual information during computer-simulated locomotion, and vestibular information was controlled through use of a motorized chair that rotated the participant around his or her vertical axis. Chair rotation was made appropriate for the steering response of the participant or made inappropriate by rotating a proportion of the veridical amount. Large steering errors resulted from selective manipulation of retinal flow and gaze angle, and the pattern of errors provided strong evidence for an additive model of combination. Vestibular information had little or no effect on steering performance, suggesting that vestibular signals are not integrated with visual information for the control of steering at these speeds.
Resumo:
An approach to the automatic generation of efficient Field Programmable Gate Arrays (FPGAs) circuits for the Regular Expression-based (RegEx) Pattern Matching problems is presented. Using a novel design strategy, as proposed, circuits that are highly area-and-time-efficient can be automatically generated for arbitrary sets of regular expressions. This makes the technique suitable for applications that must handle very large sets of patterns at high speed, such as in the network security and intrusion detection application domains. We have combined several existing techniques to optimise our solution for such domains and proposed the way the whole process of dynamic generation of FPGAs for RegEX pattern matching could be automated efficiently.
Resumo:
This paper describes a proposed new approach to the Computer Network Security Intrusion Detection Systems (NIDS) application domain knowledge processing focused on a topic map technology-enabled representation of features of the threat pattern space as well as the knowledge of situated efficacy of alternative candidate algorithms for pattern recognition within the NIDS domain. Thus an integrative knowledge representation framework for virtualisation, data intelligence and learning loop architecting in the NIDS domain is described together with specific aspects of its deployment.
Resumo:
Metrics are often used to compare the climate impacts of emissions from various sources, sectors or nations. These are usually based on global-mean input, and so there is the potential that important information on smaller scales is lost. Assuming a non-linear dependence of the climate impact on local surface temperature change, we explore the loss of information about regional variability that results from using global-mean input in the specific case of heterogeneous changes in ozone, methane and aerosol concentrations resulting from emissions from road traffic, aviation and shipping. Results from equilibrium simulations with two general circulation models are used. An alternative metric for capturing the regional climate impacts is investigated. We find that the application of a metric that is first calculated locally and then averaged globally captures a more complete and informative signal of climate impact than one that uses global-mean input. The loss of information when heterogeneity is ignored is largest in the case of aviation. Further investigation of the spatial distribution of temperature change indicates that although the pattern of temperature response does not closely match the pattern of the forcing, the forcing pattern still influences the response pattern on a hemispheric scale. When the short-lived transport forcing is superimposed on present-day anthropogenic CO2 forcing, the heterogeneity in the temperature response to CO2 dominates. This suggests that the importance of including regional climate impacts in global metrics depends on whether small sectors are considered in isolation or as part of the overall climate change.
Resumo:
People are often exposed to more information than they can actually remember. Despite this frequent form of information overload, little is known about how much information people choose to remember. Using a novel “stop” paradigm, the current research examined whether and how people choose to stop receiving new—possibly overwhelming—information with the intent to maximize memory performance. Participants were presented with a long list of items and were rewarded for the number of correctly remembered words in a following free recall test. Critically, participants in a stop condition were provided with the option to stop the presentation of the remaining words at any time during the list, whereas participants in a control condition were presented with all items. Across five experiments, we found that participants tended to stop the presentation of the items to maximize the number of recalled items, but this decision ironically led to decreased memory performance relative to the control group. This pattern was consistent even after controlling for possible confounding factors (e.g., task demands). The results indicated a general, false belief that we can remember a larger number of items if we restrict the quantity of learning materials. These findings suggest people have an incomplete understanding of how we remember excessive amounts of information.