2 resultados para industrial classification

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to provide a quantitative multicriteria decision-making approach to knowledge management in construction entrepreneurship education by means of an analytic knowledge network process (KANP) Design/methodology/approach- The KANP approach in the study integrates a standard industrial classification with the analytic network process (ANP). For the construction entrepreneurship education, a decision-making model named KANP.CEEM is built to apply the KANP method in the evaluation of teaching cases to facilitate the case method, which is widely adopted in entrepreneurship education at business schools. Findings- The study finds that there are eight clusters and 178 nodes in the KANP.CEEM model, and experimental research on the evaluation of teaching cases discloses that the KANP method is effective in conducting knowledge management to the entrepreneurship education. Research limitations/implications- As an experimental research, this paper ignores the concordance between a selected standard classification and others, which perhaps limits the usefulness of KANP.CEEM model elsewhere. Practical implications- As the KANP.CEEM model is built based on the standard classification codes and the embedded ANP, it is thus expected that the model has a wide potential in evaluating knowledge-based teaching materials for any education purpose with a background from the construction industry, and can be used by both faculty and students. Originality/value- This paper fulfils a knowledge management need and offers a practical tool for an academic starting out on the development of knowledge-based teaching cases and other teaching materials or for a student going through the case studies and other learning materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scene classification based on latent Dirichlet allocation (LDA) is a more general modeling method known as a bag of visual words, in which the construction of a visual vocabulary is a crucial quantization process to ensure success of the classification. A framework is developed using the following new aspects: Gaussian mixture clustering for the quantization process, the use of an integrated visual vocabulary (IVV), which is built as the union of all centroids obtained from the separate quantization process of each class, and the usage of some features, including edge orientation histogram, CIELab color moments, and gray-level co-occurrence matrix (GLCM). The experiments are conducted on IKONOS images with six semantic classes (tree, grassland, residential, commercial/industrial, road, and water). The results show that the use of an IVV increases the overall accuracy (OA) by 11 to 12% and 6% when it is implemented on the selected and all features, respectively. The selected features of CIELab color moments and GLCM provide a better OA than the implementation over CIELab color moment or GLCM as individuals. The latter increases the OA by only ∼2 to 3%. Moreover, the results show that the OA of LDA outperforms the OA of C4.5 and naive Bayes tree by ∼20%. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.083690]