29 resultados para implant frameworks

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prerequisite for the enrichment of antibodies screened from phage display libraries is their stable expression on a phage during multiple selection rounds. Thus, if stringent panning procedures are employed, selection is simultaneously driven by antigen affinity, stability and solubility. To take advantage of robust pre-selected scaffolds of such molecules, we grafted single-chain Fv (scFv) antibodies, previously isolated from a human phage display library after multiple rounds of in vitro panning on tumor cells, with the specificity of the clinically established murine monoclonal anti-CD22 antibody RFB4. We show that a panel of grafted scFvs retained the specificity of the murine monoclonal antibody, bound to the target antigen with high affinity (6.4-9.6 nM), and exhibited exceptional biophysical stability with retention of 89-93% of the initial binding activity after 6 days of incubation in human serum at 37degreesC. Selection of stable human scaffolds with high sequence identity to both the human germline and the rodent frameworks required only a small number of murine residues to be retained within the human frameworks in order to maintain the structural integrity of the antigen binding site. We expect this approach may be applicable for the rapid generation of highly stable humanized antibodies with low immunogenic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the use of transition-metal-exchanged zeolites as media for the catalytic formation and encapsulation of both polyethyne and polypropyne, and computer modeling studies on the composites so formed. Alkyne gas was absorbed into the pores of zeolite Y (Faujasite) exchanged with transition-metal cations [Fe(II), Co(II), Cu(II), Ni(II), and Zn(II)]. Ni(II) and Zn(II) were found to be the most efficient for the production of poly-ynes. These cations were also found to be effective in polymer generation when exchanged in zeolites mordenite and beta. The resulting powdered samples were characterized by FTIR, Raman, diffuse reflectance electronic spectroscopy, TEM, and elemental analysis, revealing, nearly complete loading of the zeolite channels for the majority of the samples. Based on the experimental carbon content, we have derived the percentage of channel filling, and the proportion of the channels containing a single polymer chain for mordenite. Experimentally, the channels for Y are close to complete filling for polyethyne (PE) and polypropyne (PP), and this is also true for polyethyne in mordenite. Computer modeling studies using Cerius2 show that the channels of mordenite can only accept a single polymer chain of PP, in which case these channels are also completely filled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural transformations between cesium silver-copper cyanides under modest conditions, both in solution and in the solid state, are described. Three new cesium silver(I) copper(I) cyanides with three-dimensional (3-D) framework structures were prepared as single crystals from a one-pot reaction initially heated under hydrothermal conditions. The first product to appear, Cs3Ag2Cu3(CN)(8) (I), when left in contact with the supernatant produced CsAgCu(CN)(3) (II) and CsAgCu(CN)(3)center dot 1/3H(2)O (III) over a few months via a series of thermodynamically controlled cascade reactions. Crystals of the hydrate (III) can be dehydrated to polycrystalline CsAgCu(CN)(3) (II) on heating at 100 degrees C in a remarkable solid-state transformation involving substantial breaking and reconnection of metal-cyanide linkages. Astonishingly, the conversion between the two known polymorphs of CsAg2Cu(CN)(4), which also involves a major change in connectivity and topology, occurs at 180 degrees C as a single-crystal to single-crystal transformation. Structural features of note in these materials include the presence of helical copper-cyanide chains in (I) and (II), which in the latter compound produce a chiral material. In (II) and (III), the silver-copper cyanide networks are both self- and interpenetrating, features also seen in the known polymorphs of CsAg2Cu(CN)(4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of antimony sulfides, incorporating the macrocyclic tetramine 1,4,8,11-tetraazacyclotetradecane ( cyclam), has been prepared by a hydrothermal method. [C10N4H26][Sb4S7] (1), [Ni(C10N4H24)][Sb4S7] (2), and [Co(C10N4H24)](x)[C10N4H26](1-x)[Sb4S7] (0.08 <= x <= 0.74) (3) have been characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetry, and analytical electron microscopy. All three materials possess the same novel three-dimensional Sb4S72- framework, constructed from layers of parallel arrays of Sb4S84- chains stacked at 90 to one another. In 1, doubly protonated macrocyclic cations reside in the channel structure of the antimonysulfide framework. In 2 and 3, the cyclam acts as a ligand, chelating the divalent transition- metal cation. Analytical and X-ray diffraction data indicate that the level of metal incorporation in 2 is effectively complete, whereas in 3, both metalated and nonmetalated forms of the macrocycle coexist within the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an attempt is described to increase the range of human sensory capabilities by means of implant technology. The key aim is to create an additional sense by feeding signals directly to the human brain, via the nervous system rather than via a presently operable human sense. Neural implant technology was used to directly interface a human nervous system with a computer in a one off trial. The output from active ultrasonic sensors was then employed to directly stimulate the human nervous system. An experimental laboratory set up was used as a test bed to assess the usefulness of this sensory addition.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper results are shown to indicate the efficacy of a direct connection between the human nervous system and a computer network. Experimental results obtained thus far from a study lasting for over 3 months are presented, with particular emphasis placed on the direct interaction between the human nervous system and a piece of wearable technology. An overview of the present state of neural implants is given, as well as a range of application areas considered thus far. A view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess the usefulness, compatibility, and long-term operability of a microelectrode array into the median nerve of the left arm of a healthy volunteer, including perception of feedback stimulation and operation of an instrumented prosthetic hand. Setting: The study was carried out from March 14 through June 18, 2002, in England and the United States. Results: The blindfolded subject received feedback information, obtained from force and slip sensors on the prosthetic hand, and subsequently used the implanted device to control the hand by applying an appropriate force to g rip an unseen object. Operability was also demonstrated remotely via the Internet, with the subject in New York, NY, and the prosthetic hand in Reading, England. Finally, the subject was able to control an electric wheelchair, via decoded signals from the implant device, to select the direction of travel by opening and closing his hand. The implantation did not result in infection or any perceivable loss of hand sensation or motion control. The implant was finally extracted because of mechanical fatigue of the percutaneous connection. Further testing after extraction has not indicated any measurable long-term defects in the subject. Conclusions: This implant may allow recipients to have abilities they would otherwise not possess. The response to stimulation improved considerably during the trial, suggesting that the subject learned to process the incoming information more effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By monitoring signals from the central nervous system, humans can be provided with a novel extra channel of communication that can, for example, be used for the voluntary control of peripheral devices. Meanwhile, stimulation of neural tissue can bring about sensation such as touch, can facilitate feedback from external, potentially remote devices and even opens up the possibility of new sensory input for the individual to experience. The concept of successfully harnessing and stimulating nervous system activity is though something that can only be achieved through an appropriate interface. However, interfacing the nervous system by means of implant technology carries with it many problems and dangers. Further, results achieved may not be as expected or as they at first appear. This paper describes a comparative study investigating different implant types and procedures. It is aimed at highlighting potential problem areas and is intended to provide a useful reference explaining important tolerances and limits.