4 resultados para impact map

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

• Objectives The objective of this paper is to propose a framework for mapping the sustainable development and poverty alleviation impacts of social and environmental enterprises in Africa. This framework is then piloted with reference to an East African Ecobusiness. • Prior Work This paper is based on data collected as part of a wider research project examining social and environmental enterprises across the 19 countries of Southern and Eastern Africa. In total, the sustainable development and poverty alleviation impacts of 20 in-depth case studies in 4 countries are being examined. • Approach Data was collected using in-depth interviews with multiple stakeholders associated with the case study business. Secondary materials were also analysed and a quantitative survey of customers undertaken. • Results In addition to their impacts on the environment, African eco businesses can also have substantial social, economic and wider poverty alleviation impacts. This paper maps the impacts of a case study East African ecobusiness, as part of developing a social and environmental enterprise impact framework for Africa and the wider developing world. In our case study, positive and negative impacts are identified, while questions are raised in relation to tradeoffs between social and environmental objectives and temporal dimensions of impact. The usefulness of existing frameworks for understanding the social, environmental and development impacts of these kinds of organisations are also considered. • Implications This paper outlines the necessity of building an African-centric impact map to capture the multi-level poverty alleviation and sustainable development impacts of social and environmental enterprise activity in developing world environments. The framework proposed also offers guidance to businesses operating in Africa about the factors that might be considered as part of their wider social and environmental responsibilities. • Value Assessing the impact of social and environmental enterprises, especially as a route to development within low income countries, is receiving increasing attention in academia and beyond. This paper presents a useful contribution to the scarce literature on social and environmental enterprises in Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Types (PFTs), and these can lead to large differences in terrestrial CO2 fluxes estimated by Dynamic Vegetation Models. In this study the Sheffield Dynamic Global Vegetation Model is used. We compare PFT maps and the resulting fluxes arising from the use of widely available moderate (1 km) resolution satellite-derived land cover maps (the Global Land Cover 2000 and several MODIS classification schemes), with fluxes calculated using a reference high (25 m) resolution land cover map specific to Great Britain (the Land Cover Map 2000). We demonstrate that uncertainty is introduced into carbon flux calculations by (1) incorrect or uncertain assignment of land cover classes to PFTs; (2) information loss at coarser resolutions; (3) difficulty in discriminating some vegetation types from satellite data. When averaged over Great Britain, modeled CO2 fluxes derived using the different 1 km resolution maps differ from estimates made using the reference map. The ranges of these differences are 254 gC m−2 a−1 in Gross Primary Production (GPP); 133 gC m−2 a−1 in Net Primary Production (NPP); and 43 gC m−2 a−1 in Net Ecosystem Production (NEP). In GPP this accounts for differences of −15.8% to 8.8%. Results for living biomass exhibit a range of 1109 gC m−2. The types of uncertainties due to land cover confusion are likely to be representative of many parts of the world, especially heterogeneous landscapes such as those found in western Europe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe ncWMS, an implementation of the Open Geospatial Consortium’s Web Map Service (WMS) specification for multidimensional gridded environmental data. ncWMS can read data in a large number of common scientific data formats – notably the NetCDF format with the Climate and Forecast conventions – then efficiently generate map imagery in thousands of different coordinate reference systems. It is designed to require minimal configuration from the system administrator and, when used in conjunction with a suitable client tool, provides end users with an interactive means for visualizing data without the need to download large files or interpret complex metadata. It is also used as a “bridging” tool providing interoperability between the environmental science community and users of geographic information systems. ncWMS implements a number of extensions to the WMS standard in order to fulfil some common scientific requirements, including the ability to generate plots representing timeseries and vertical sections. We discuss these extensions and their impact upon present and future interoperability. We discuss the conceptual mapping between the WMS data model and the data models used by gridded data formats, highlighting areas in which the mapping is incomplete or ambiguous. We discuss the architecture of the system and particular technical innovations of note, including the algorithms used for fast data reading and image generation. ncWMS has been widely adopted within the environmental data community and we discuss some of the ways in which the software is integrated within data infrastructures and portals.