5 resultados para hybrid orbital hydrogenic atomic

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction force constants between bond-stretching and angle-bending co-ordinates in polyatomic molecules have been attributed, by some authors, to changes of hybridization due to orbital-following of the bending co-ordinate, and consequent changes of bond length due to the change of hybridization. A method is described for using this model quantitatively to reduce the number of independent force constants in the potential function of a polyatomic molecule, by relating stretch-bend interaction constants to the corresponding diagonal stretching constants. It is proposed to call this model the Hybrid Orbital Force Field. The model is applied to the tetrahedral four co-ordinated carbon atom (as in methane) and to the trigonal planar three coordinated carbon atom (as in formaldehyde).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Force constants and normal coordinates have been recalculated for all of the in-plane vibrations of benzene, making use of the recently observed data on one of the Coriolis constants in the E2g species from the work of Callomon et al. The extent to which the force field is uniquely determined by the data is reviewed for each symmetry species in turn, and the results of a force constant refinement calculation are reported in which a modified valency force field was used based on the hybrid orbital model. The results show considerable differences from Whiffen's normal coordinates for benzene, but somewhat smaller differences from Scherer's recent calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infra-red spectra have been recorded for silyl fluoride and silyl fluoride-d3 at a resolution of circa 0·3 cm-1. Rotational structure has been observed for parallel fundamentals in both molecules, and for all perpendicular fundamentals. In both SiH3F and SiD3F the A1 and E species deformation modes interact strongly via a Coriolis perturbation; this has been analysed, and the band origin of v5 for SiH3F is reassigned. A hybrid-orbital force field based on the experimental data is also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structure and oxidation state of atomic Au adsorbed on a perfect CeO2(111) surface have been investigated in detail by means of periodic density functional theory-based calculations, using the LDA+U and GGA+U potentials for a broad range of U values, complemented with calculations employing the HSE06 hybrid functional. In addition, the effects of the lattice parameter a0 and of the starting point for the geometry optimization have also been analyzed. From the present results we suggest that the oxidation state of single Au atoms on CeO2(111) predicted by LDA+U, GGA+U, and HSE06 density functional calculations is not conclusive and that the final picture strongly depends on the method chosen and on the construction of the surface model. In some cases we have been able to locate two well-defined states which are close in energy but with very different electronic structure and local geometries, one with Au fully oxidized and one with neutral Au. The energy difference between the two states is typically within the limits of the accuracy of the present exchange-correlation potentials, and therefore, a clear lowest-energy state cannot be identified. These results suggest the possibility of a dynamic distribution of Au0 and Au+ atomic species at the regular sites of the CeO2(111) surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal–insulator transition of VO2 so far has evaded an accurate description by density functional theory. The screened hybrid functional of Heyd, Scuseria and Ernzerhof leads to reasonable solutions for both the low-temperature monoclinic and high-temperature rutile phases only if spin polarization is excluded from the calculations. We explore whether a satisfactory agreement with experiment can be achieved by tuning the fraction of Hartree Fock exchange (a) in the density functional. It is found that two branches of locally stable solutions exist for the rutile phase for 12:5% 6 a 6 20%. One is metallic and has the correct stability as compared to the monoclinic phase, the other is insulating with lower energy than the metallic branch. We discuss these observations based on the V 3d orbital occupations and conclude that a ¼ 10% is the best possible choice for spin-polarized VO2 calculations.