25 resultados para human phosphorus cycle
em CentAUR: Central Archive University of Reading - UK
Resumo:
There is ongoing debate concerning the possible environmental and human health impacts of growing genetically modified (GM) crops. Here, we report the results of a life-cycle assessment (LCA) comparing the environmental and human health impacts of conventional sugar beet growing regimes in the UK and Germany with those that might be expected if GM herbicide-tolerant (to glyphosate) sugar beet is commercialized. The results presented for a number of environmental and human health impact categories suggest that growing the GM herbicide-tolerant crop would be less harmful to the environment and human health than growing the conventional crop, largely due to lower emissions from herbicide manufacture, transport and field operations. Emissions contributing to negative environmental impacts, such as global warming, ozone depletion, ecotoxicity of water and acidification and nutrification of soil and water, were much lower for the herbicide-tolerant crop than for the conventional crop. Emissions contributing to summer smog, toxic particulate matter and carcinogenicity, which have negative human health impacts, were also substantially lower for the herbicide-tolerant crop. The environmental and human health impacts of growing GM crops need to be assessed on a case-by-case basis using a holistic approach. LCA is a valuable technique for helping to undertake such assessments.
Resumo:
Life-Cycle Assessment (LCA) was used to assess the potential environmental and human health impacts of growing genetically-modified (GM), herbicide-tolerant sugar beet in the UK and Germany compared with conventional sugar beet varieties. The GM variety results in lower potential environmental impacts on global warming, airborne nutrification, ecotoxicity (of soil and water) and watercourse enrichment, and lower potential human health impacts in terms of production of toxic particulates, summer smog, carcinogens and ozone depletion. Although the overall contribution of GM sugar beet to reducing harmful emissions to the environment would be relatively small, the potential for GM crops to reduce pollution from agriculture, including diffuse water pollution, is highlighted.
Resumo:
Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect(1), although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate(2). Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds(3). Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive(1,2,4). Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model(5,6) for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.
Resumo:
Galactic cosmic rays (GCRs) are extremely difficult to shield against and pose one of the most severe long-term hazards for human exploration of space. The recent solar minimum between solar cycles 23 and 24 shows a prolonged period of reduced solar activity and low interplanetary magnetic field strengths. As a result, the modulation of GCRs is very weak, and the fluxes of GCRs are near their highest levels in the last 25 years in the fall of 2009. Here we explore the dose rates of GCRs in the current prolonged solar minimum and make predictions for the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is now measuring GCRs in the lunar environment. Our results confirm the weak modulation of GCRs leading to the largest dose rates seen in the last 25 years over a prolonged period of little solar activity.
Resumo:
The paper presents the methods and results of a life-cycle assessment (LCA) applied to the production of maize grain from a conventional variety compared with maize grain from a variety genetically modified to be herbicide tolerant and insect protected and to contain an enhanced oil and lysine content, and its impact when fed to broiler chickens. The findings show that there are both environmental and human health benefits of growing GM maize including lower impacts on global warming, ozone depletion, freshwater ecotoxicity and human toxicity. However, when considered in terms of the use of maize as a feed input to broiler chicken production, the benefits of the GM alternative become negligible compared to the use of conventional maize.
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Resumo:
Ecological data suggest a long-term diet high in plant material rich in biologically active compounds, such as the lignans, can significantly influence the development of prostate cancer over the lifetime of an individual. The capacity of a pure mammalian lignan, enterolactone (ENL), to influence the proliferation of the LNCaP human prostate cancer cell line was investigated as a function of cell density, metabolic activity, expression and secretion of prostate specific antigen (PSA), cell cycle profile, and the expression of genes involved in development and progression of prostate cancer. Treatment with a subcytotoxic concentration of ENL (60 mu M for 72 h) was found to reduce: cell density (57.5%, SD 7.23, p < 0.001), metabolic activity (55%, SD 0.03, p < 0.001), secretion of PSA (48.50% SD 4.74, p = 0.05) and induce apoptosis (8.33-fold SD 0.04, p = 0.001) compared to untreated cells. Cotreatment with 10 mu M etoposide was found to increase apoptosis by 50.17% (SD 0.02, p < 0.001). Additionally, several key genes (e.g. MCMs, survivin and CDKs) were beneficially regulated by ENL treatment (p < 0.05). The data suggest that the antiproliferative activity of ENL is a consequence of altered expression of cell cycle associated genes and provides novel molecular evidence for the antiproliferative properties of a pure lignan in prostate cancer.
Resumo:
Extra virgin olive oil is rich in phenolic compounds which are believed to exert beneficial effects against many pathological processes, including the development of colon cancer. We show that one of the major polyphenolic constituents of extra virgin olive oil, hydroxytyrosol (HT), exerts strong anti-proliferative effects against human colon adenocarcinoma cells via its ability to induce a cell cycle block in G2/M. These antiproliferative effects were preceded by a strong inhibition of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and a downstream reduction of cyclin D I expression, rather than by inhibition of p38 activity and cyclooxygenase-2 (COX-2) expression. These findings are of particular relevance due to the high colonic concentration of HT compared to the other olive oil polyphenols and may help explain the inverse link between colon cancer and olive oil consumption.
Resumo:
There is evidence to suggest that insulin sensitivity may vary in response to changes in sex hormone levels. However, the results Of human studies designed to investigate changes in insulin sensitivity through the menstrual cycle have proved inconclusive. The aims of this Study were to 1) evaluate the impact of menstrual cycle phase on insulin sensitivity measures and 2) determine the variability Of insulin sensitivity measures within the same menstrual cycle phase. A controlled observational study of 13 healthy premenopausal women, not taking any hormone preparation and having regular menstrual cycles, was conducted. Insulin sensitivity (Si) and glucose effectiveness (Sg) were measured using an intravenous glucose tolerance test (IVGTT) with minimal model analysis. Additional Surrogate measures Of insulin sensitivity were calculated (homoeostasis model for insulin resistance [HOMA IR], quantitative insulin-to-glucose check index [QUICKI] and revised QUICKI [rQUICKI]), as well as plasma lipids. Each woman was tested in the luteal and follicular phases of her Menstrual cycle, and duplicate measures were taken in one phase of the cycle. No significant differences in insulin sensitivity (measured by the IVGTT or Surrogate markers) or plasma lipids were reported between the two phases of the menstrual cycle or between duplicate measures within the same phase. It was Concluded that variability in measures of insulin sensitivity were similar within and between menstrual phases.
Resumo:
Essential oils have been widely used in traditional medicine for the eradication of lice, including head lice, but due to the variability of their constitution the effects may not be reproducible. In an attempt to assess the contribution of their component monoterpenoids, a range of common individual compounds were tested in in vitro toxicity model against both human lice (Pediculus humanus, an accepted model of head lice lethality) and their eggs, at different concentrations. No detailed study into the relative potencies of their constituent terpenoids has so far been published. Adult lice were observed for lack of response to stimuli over 3 h and the LT50 calculated, and the percentage of eggs failing to hatch was used to generate ovicidal activity data. A ranking was compiled for adult lice and partially for eggs, enabling structure-activity relationships to be assessed for lethality to both, and showed that, for activity in both life-cycle stages, different structural criteria were required. (+)-Terpinen-4-ol was the most effective compound against adult lice, followed by other mono-oxygenated monocyclic compounds, whereas nerolidol was particularly lethal to eggs, but ineffective against adult lice. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Endothelial cells (EC) express constitutively two major isofonns (Nox2 and Nox4) of the catalytic subunit of NADPH oxidase, which is a major source of endothelial reactive oxygen species. However, the individual roles of these Noxes in endothelial function remain unclear. We have investigated the role of Nox2 in nutrient deprivation-induced cell cycle arrest and apoptosis. In proliferating human dermal microvascular EC, Nox2 mRNA expression was low relative to Nox4 (Nox2:Nox4 similar to 1:13), but was upregulated 24 It after starvation and increased to 8 +/- 3.5-fold at 36 h of starvation. Accompanying the upregulation of Nox2, there was a 2.28 +/- 0.18-fold increase in O-2(-); production, a dramatic induction of p21(cip1) and p53, cell cycle arrest, and the onset of apoptosis (all p < 0.05). All these changes were inhibited significantly by in vitro deletion of Nox2 expression and in coronary microvascular EC isolated from Nox2 knockout mice. In Nox2 knockout cells, although there was a 3.8 +/- 0.5fold increase in Nox4 mRNA expression after 36 h of starvation (p < 0.01), neither production nor the p21(cip1) or p53 expression was increased significantly and only 0.46% of cells were apoptotic. In conclusion, Nox2-derived O-2(-), through the modulation of p21(cip1) and p53 expression, participates in endothelial cell cycle regulation and apoptosis. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Titanocene compounds are a novel series of agents that exhibit cytotoxic effects in a variety of human cancer cells in vitro and in vivo. In this study, the antiproliferative activity of two titanocenes (Titanocenes X and Y) was evaluated in human epidermoid cancer cells in vitro. Titanocenes X and Y induce apoptotic cell death in epidermoid cancer cells, with IC50 values that are comparable to cisplatin. Characterisation of the cell death pathway induced by titanocene compounds in A431 cells revealed that apoptosis is preceded by cell cycle arrest and the inhibition of cell proliferation. The induction of apoptosis is dependent on the activation of caspase-3 and -7 but not caspase-8. Furthermore, the antitumour activity of Titanocene Y was tested in an A431 xenograft model of epidermoid cancer. Results indicate that Titanocene Y significantly reduced the growth of A431 xenografts with an antitumour effect similar to cisplatin. These results suggest that titanocenes represent a novel series of promising antitumour agents.
Resumo:
This paper outlines some rehabilitation applications of manipulators and identifies that new approaches demand that the robot make an intimate contact with the user. Design of new generations of manipulators with programmable compliance along with higher level controllers that can set the compliance appropriately for the task, are both feasible propositions. We must thus gain a greater insight into the way in which a person interacts with a machine, particularly given that the interaction may be non-passive. We are primarily interested in the change in wrist and arm dynamics as the person co-contracts his/her muscles. It is observed that this leads to a change in stiffness that can push an actuated interface into a limit cycle. We use both experimental results gathered from a PHANToM haptic interface and a mathematical model to observe this effect. Results are relevant to the fields of rehabilitation and therapy robots, haptic interfaces, and telerobotics
Resumo:
Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.
Resumo:
The first pandemic of the 21(st) century, pandemic H1N1 2009 (pH1N1 2009), emerged from a swine-origin source. Although human infections with swine-origin influenza have been reported previously, none went on to cause a pandemic or indeed any sustained human transmission. In previous pandemics, specific residues in the receptor binding site of the haemagglutinin (HA) protein of influenza have been associated with the ability of the virus to transmit between humans. In the present study we investigated the effect of residue 227 in HA on cell tropism and transmission of pH1N1 2009. In pH1N1 2009 and recent seasonal H1N1 viruses this residue is glutamic acid, whereas in swine influenza it is alanine. Using human airway epithelium, we show a differential cell tropism of pH1N1 2009 compared to pH1N1 2009 E227A and swine influenza suggesting this residue may alter the sialic acid conformer binding preference of the HA. Furthermore, both pH1N1 2009 E227A and swine influenza multi-cycle viral growth was found to be attenuated in comparison to pH1N1 2009 in human airway epithelium. However this altered tropism and viral growth in human airway epithelium did not abrogate respiratory droplet transmission of pH1N1 2009 E227A in ferrets. Thus, acquisition of E at residue 227 was not solely responsible for the ability of pH1N1 2009 to transmit between humans.