33 resultados para high optical-to-optical conversion efficiency
em CentAUR: Central Archive University of Reading - UK
Resumo:
Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.
Resumo:
The effect of increased dietary intakes of alpha-linolenic acid (ALNA) or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for 2 months upon plasma lipid composition and capacity for conversion of ALNA to longer-chain metabolites was investigated in healthy men (52 (SD 12) years). After a 4-week baseline period when the subjects substituted a control spread, a test meal containing [U-C-13]ALNA (700 mg) was consumed to measure conversion to EPA, docosapentaenoic acid (DPA) and DHA over 48 h. Subjects were then randomised to one of three groups for 8 weeks before repeating the tracer study: (1) continued on same intake (control, n 5); (2) increased ALNA intake (10 g/d, n 4); (3) increased EPA+DHA intake (1.5 g/d, n 5). At baseline, apparent fractional conversion of labelled ALNA was: EPA 2.80, DPA 1.20 and DRA 0.04%. After 8 weeks on the control diet, plasma lipid composition and [C-13]ALNA conversion remained unchanged compared with baseline. The high-ALNA diet resulted in raised plasma triacylglycerol-EPA and -DPA concentrations and phosphatidylcholine-EPA concentration, whilst [C-13]ALNA conversion was similar to baseline. The high-(EPA+DHA) diet raised plasma phosphatidylcholine-EPA and -DHA concentrations, decreased [C-13]ALNA conversion to EPA (2-fold) and DPA (4-fold), whilst [C-13]ALNA conversion to DHA was unchanged. The dietary interventions did not alter partitioning of ALNA towards beta-oxidation. The present results indicate ALNA conversion was down-regulated by increased product (EPA+DHA) availability, but was not up-regulated by increased substrate (ALNA) consumption. This suggests regulation of ALNA conversion may limit the influence of variations in dietary n-3 fatty acid intake on plasma lipid compositions.
Resumo:
With continually increasing demands for improvements to atmospheric and planetary remote-sensing instrumentation, for both high optical system performance and extended operational lifetimes, an investigation to access the effects of prolonged exposure of the space environment to a series of infrared interference filters and optical materials was promoted on the NASA LDEF mission. The NASA Long Duration Exposure Facility (LDEF) was launchd by the Space Shuttle to transport various science and technology experiments both to and from space, providing investigators with the opportunity to study the effects of the space environment on materials and systems used in space-flight applications. Preliminary results to be discussed consist of transmission measurements obtained and processed from an infrared spectrophotometer both before (1983) and after (1990) exposure compared with unexposed control specimens, together with results of detailed microscopic and general visual examinations performed on the experiment. The principle lead telluride (PbTe) and Zinc Sulphide (ZnS) based multilayer filters selected for this preliminary investigation consist of : an 8-12µm low pass edge filter, a 10.6µm 2.5% half bandwidth (HBW) double half-wave narrow bandpass filter, and a 10% HBW triple half-wave wide bandpass filter at 15µm. Optical substrates of MgF2 and KRS-5 (T1BrI) will also be discussed.
Resumo:
Current global atmospheric models fail to simulate well organised tropical phenomena in which convection interacts with dynamics and physics. A new methodology to identify convectively coupled equatorial waves, developed by NCAS-Climate, has been applied to output from the two latest models of the Met Office/Hadley Centre which have fundamental differences in dynamical formulation. Variability, horizontal and vertical structures, and propagation characteristics of tropical convection and equatorial waves, along with their coupled behaviour in the models are examined and evaluated against a previous comprehensive study of observations. It is shown that, in general, the models perform well for equatorial waves coupled with off-equatorial convection. However they perform poorly for waves coupled with equatorial convection. The vertical structure of the simulated wave is not conducive to energy conversion/growth and does not support the correct physical-dynamical coupling that occurs in the real world. The following figure shows an example of the Kelvin wave coupled with equatorial convection. It shows that the models fail to simulate a key feature of convectively coupled Kelvin wave in observations, namely near surface anomalous equatorial zonal winds together with intensified equatorial convection and westerly winds in phase with the convection. The models are also not able to capture the observed vertical tilt structure and the vertical propagation of the Kelvin wave into the lower stratosphere as well as the secondary peak in the mid-troposphere, particularly in HadAM3. These results can be used to provide a test-bed for experimentation to improve the coupling of physics and dynamics in climate and weather models.
Resumo:
We present an analysis of trace gas correlations in the lowermost stratosphere. In‐situ aircraft measurements of CO, N2O, NOy and O3, obtained during the STREAM 1997 winter campaign, have been used to investigate the role of cross‐tropopause mass exchange on tracer‐tracer relations. At altitudes several kilometers above the local tropopause, undisturbed stratospheric air was found with NOy/NOy * ratios close to unity, NOy/O3 about 0.003–0.006 and CO mixing ratios as low as 20 ppbv (NOy * is a proxy for total reactive nitrogen derived from NOy–N2O relations measured in the stratosphere). Mixing of tropospheric air into the lowermost stratosphere has been identified by enhanced ratios of NOy/NOy * and NOy/O3, and from scatter plots of CO versus O3. The enhanced NOy/O3 ratio in the lowermost stratospheric mixing zone points to a reduced efficiency of O3 formation from aircraft NOx emissions.
Resumo:
The efficiency of energy utilisation in cattle is a determinant of the profitability of milk and beef production, as well as their environmental impact. At an animal level, meat and milk production by ruminants is less efficient than pig and poultry production, in part due to lower digestibility of forages compared with grains. However, when compared on the basis of human-edible inputs, the ruminant has a clear efficiency advantage. There has been recent interest in feed conversion efficiency (FCE) in dairy cattle and residual feed intake, an indicator of FCE, in beef cattle. Variation between animals in FCE may have genetic components, allowing selection for animals with greater efficiency and reduced environmental impact. A major source of variation in FCE is feed digestibility, and thus approaches that improve digestibility should improve FCE if rumen function is not disrupted. Methane represents a substantial loss of digestible energy from rations. Major determinants of methane emission are the amount of feed consumed and the proportions of forage and concentrates fed. In addition, feeding fat has long been known to reduce methane emission. A myriad of other supplements and additives are currently being investigated as mitigators of methane emission, but in many cases compounds effective in sheep are ineffective in lactating dairy cows. Ultimately, the adoption of ‘best practice’ in diet formulation and management may be the most effective option for reducing methane. In assessing the efficiency of energy use for milk and meat production by cattle, and their environmental impact, it is imperative that comparisons be made at a systems level, and that the wider social and economic implications of mitigation policy are considered.
Resumo:
A new electronic software distribution (ESD) life cycle analysis (LCA)methodology and model structure were constructed to calculate energy consumption and greenhouse gas (GHG) emissions. In order to counteract the use of high level, top-down modeling efforts, and to increase result accuracy, a focus upon device details and data routes was taken. In order to compare ESD to a relevant physical distribution alternative,physical model boundaries and variables were described. The methodology was compiled from the analysis and operational data of a major online store which provides ESD and physical distribution options. The ESD method included the calculation of power consumption of data center server and networking devices. An in-depth method to calculate server efficiency and utilization was also included to account for virtualization and server efficiency features. Internet transfer power consumption was analyzed taking into account the number of data hops and networking devices used. The power consumed by online browsing and downloading was also factored into the model. The embedded CO2e of server and networking devices was proportioned to each ESD process. Three U.K.-based ESD scenarios were analyzed using the model which revealed potential CO2e savings of 83% when ESD was used over physical distribution. Results also highlighted the importance of server efficiency and utilization methods.
Resumo:
Soluble reactive phosphorus (SRP) plays a key role in eutrophication, a global problem decreasing habitat quality and in-stream biodiversity. Mitigation strategies are required to prevent SRP fluxes from exceeding critical levels, and must be robust in the face of potential changes in climate, land use and a myriad of other influences. To establish the longevity of these strategies it is therefore crucial to consider the sensitivity of catchments to multiple future stressors. This study evaluates how the water quality and hydrology of a major river system in the UK (the River Thames) respond to alterations in climate, land use and water resource allocations, and investigates how these changes impact the relative performance of management strategies over an 80-year period. In the River Thames, the relative contributions of SRP from diffuse and point sources vary seasonally. Diffuse sources of SRP from agriculture dominate during periods of high runoff, and point sources during low flow periods. SRP concentrations rose under any future scenario which either increased a) surface runoff or b) the area of cultivated land. Under these conditions, SRP was sourced from agriculture, and the most effective single mitigation measures were those which addressed diffuse SRP sources. Conversely, where future scenarios reduced flow e.g. during winters of reservoir construction, the significance of point source inputs increased, and mitigation measures addressing these issues became more effective. In catchments with multiple point and diffuse sources of SRP, an all-encompassing effective mitigation approach is difficult to achieve with a single strategy. In order to attain maximum efficiency, multiple strategies might therefore be employed at different times and locations, to target the variable nature of dominant SRP sources and pathways.
Resumo:
Inversions breaking the 1041 bp int1h-1 or the 9.5-kb int22h-1 sequence of the F8 gene cause hemophilia A in 1/30,000 males. These inversions are due to homologous recombination between the above sequences and their inverted copies on the same DNA molecule, respectively, int1h-2 and int22h-2 or int22h-3. We find that (1) int1h and int22h duplicated more than 25 million years ago; (2) the identity of the copies (>99%) of these sequences in humans and other primates is due to gene conversion; (3) gene conversion is most frequent in the internal regions of int22h; (4) breakpoints of int22h-related inversions also tend to involve the internal regions of int22h; (5) sequence variations in a sample of human X chromosomes defined eight haplotypes of int22h-1 and 27 of int22h-2 plus int22h-3; (6) the latter two sequences, which lie, respectively, 500 and 600 kb telomeric to int22h-1 are five-fold more identical when in cis than when in trans, thus suggesting that gene conversion may be predominantly intrachromosomal; (7) int1h, int22h, and flanking sequences evolved at a rate of about 0.1% substitutions per million years during the divergence between humans and other primates, except for int1h during the human-chimpanzee divergence, when its rate of evolution was significantly lower. This is reminiscent of the slower evolution of palindrome arms in the male specific regions of the Y chromosome and we propose, as an explanation, that intrachromosomal gene conversion and cosegregation of the duplicated regions favors retention of the ancestral sequence and thus reduces the evolution rate.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) is a key ionization technique in mass spectrometry (MS) for the analysis of labile macromolecules. An important area of study and improvements in relation to MALDI and its application in high-sensitivity MS is that of matrix design and sample preparation. Recently, 4-chloro-alpha-cyanocinnamic acid (ClCCA) has been introduced as a new rationally designed matrix and reported to provide an improved analytical performance as demonstrated by an increase in sequence coverage of protein digests obtained by peptide mass mapping (PMM) (Jaskolla, T. W.; et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12200-12205). This new matrix shows the potential to be a superior alternative to the commonly used and highly successful alpha-cyano-4-hydroxycinnamic acid (CHCA). We have taken this design one step further by developing and optimizing an ionic liquid matrix (ILM) and liquid support matrix (LSM) using ClCCA as the principle chromophore and MALDI matrix compound. These new liquid matrices possess greater sample homogeneity and a simpler morphology. The data obtained from our studies show improved sequence coverage for BSA digests compared to the traditional CHCA crystalline matrix and for the ClCCA-containing ILM a similar performance to the ClCCA crystalline matrix down to 1 fmol of BSA digest prepared in a single MALDI sample droplet with current sensitivity levels in the attomole range. The LSMs show a high tolerance to contamination such as ammonium bicarbonate, a commonly used buffering agent.
Resumo:
Eight Jersey cows were used in two balanced 4 x 4 Latin Squares to investigate the effects of replacement of dietary starch with non-forage fibre on productivity, diet digestibility and feeding behaviour. Total-mixed rations consisted of maize silage, grass silage and a soyabean meal-based concentrate mixture, each at 250g/kg DM, with the remaining 250g consisting of cracked wheat/soya hulls (SH) in the ratios of 250:0, 167:83; 83:167 and 0:250 g, respectively, for treatments SH0, SH83, SH167 and SH250. Starch concentrations were 302, 248, 193 and 140g/kg DM, and NDF concentrations were 316, 355, 394 and 434g/kg DM, for treatments SHO, SH83, SH167 and SH250, respectively. Total eating time increased (p < 0.05) as SH inclusion increased, but total rumination time was unaffected. Digestibility of DM, organic matter and starch declined (p < 0.01) as SH inclusion increased, whilst digestibility of NDF and ADF increased (p < 0.01). Dry-matter intake tended to decline with increasing SH, whilst bodyweight, milk yield and fat and lactose concentrations were unaffected by treatment. Milk protein concentration decreased (p < 0.01) as SH level increased. Feed conversion efficiency improved (p < 0.05) as SH inclusion rose, but it was not possible to determine whether this was due to the increased fibre levels alone, or the favourable effect on rumen fermentation of decreasing starch levels. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch, and decreases in the proportions of structural carbohydrates in the ensiled crop. This experiment investigated the effects of three maize silages of 291 (low), 339 (medium) and 393 (high) g DM per kg fresh weight on the performance of 48 Simmental. Holstein-Friesian cattle. Equal numbers of steers (mean start weight = 503 (s.d. 31.3) kg) and heifers (mean start weight = 378 (s.d. 11.2) kg) were offered individually isonitrogenous diets composed of the three silages plus a protein supplement with minerals once daily until slaughter at the target live weight of 575 and 475 kg for steers and heifers, respectively. Intake was reduced on the low diet (P < 0.01) compared with the other two treatments. Dietary starch intake increased by a total of 1 kg/day between low and medium diets but by only 0.2 kg/day between medium and high diets. Unlike starch intake, total neutral-detergent fibre intake showed no significant difference (P > 0.05) between diets. There were no differences in live-weight gain between treatments but differences (P < 0.05) in food conversion efficiency indicated relative gains of 115, 100 and 102 g gain per kg DM intake for diets low, medium and high, respectively. There were no differences between diets in carcass weights, fat score and overall conformation.
Resumo:
Development research has responded to a number of charges over the past few decades. For example, when traditional research was accused of being 'top-down', the response was participatory research, linking the 'receptors' to the generators of research. As participatory processes were recognised as producing limited outcomes, the demand-led agenda was born. In response to the alleged failure of research to deliver its products, the 'joined-up' model, which links research with the private sector, has become popular. However, using examples from animal-health research, this article demonstrates that all the aforementioned approaches are seriously limited in their attempts to generate outputs to address the multi-faceted problems facing the poor. The article outlines a new approach to research: the Mosaic Model. By combining different knowledge forms, and focusing on existing gaps, the model aims to bridge basic and applied findings to enhance the efficiency and value of research, past, present, and future.
Resumo:
Maize silage-based diets with three dietary crude protein (CP) supplements were offered to 96 finishing cattle of contrasting breed (Holstein Friesian (HF) v. Simmental x HF (SHF)) and gender (bull v. steer) housed in two types of feeding system (group fed v. individually fed). The three protein supplements differed either in CP or protein degradability (degradable (LUDP) v. rumen undegradable (HUDP)) and provided CP concentrations of 142 (Con), 175 (LUDP) and 179 (HUDP) g/kg dry matter (DM) respectively, with ratios of degradable to undegradable of 3.0, 1.4 and 0.9:1 for diets Con, LOP and HUDP respectively. DM intakes were marginally higher (P = 0. 102) for LOP when compared with Con and HOP Rates of daily live-weight gain (DLWG) were higher (P = 0.005) in LUDP and HOP when compared with Con. HF had higher DM intakes than SHF although this did not result in any improvement in HF DLWG. Bulls had significantly better DM intakes, DLWG and feed conversion efficiency than steers. Conformation scores were better in SHF than HF (P < 0.001) and fat scores lower in bulls than steers (p < 0.001). There was a number of first order interactions established between dietary treatment, breed, gender and housing system with respect to rates of gain and carcass fat scores.
Resumo:
The United States and the European Union have set targets for biofuel production to decrease reliance on fossil fuels and to reduce fossil carbon emissions. Attainment of biofuel targets d6pends upon policy and infrastructure development but also on production of suitable raw materials. Production of relevant crops relies on the decisions that farmers make in their economic and political environment. We need to identify any farmer-related barriers to biofuel production and to determine whether novel policy and technology are required to meet targets. These aspects of the emerging biofuel industry are relevant across international barriers and have notyet been addressed quantitatively. We describe a case study from the UK of farmers' intentions toward producing two biofuel crops for which refining capacity either exists or is under construction. Given farmers' intentions, current land use, and conversion efficiency, we estimate potential biofuel production. These estimates indicate that EU targets are not achievable using domestically grown raw materials without policy intervention, use of alternative feedstocks, and either significant improvements in processing efficiency or largescale changes in land use.