16 resultados para hierarchical clustering techniques

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hierarchical clustering method for semantic Web service discovery. This method aims to improve the accuracy and efficiency of the traditional service discovery using vector space model. The Web service is converted into a standard vector format through the Web service description document. With the help of WordNet, a semantic analysis is conducted to reduce the dimension of the term vector and to make semantic expansion to meet the user’s service request. The process and algorithm of hierarchical clustering based semantic Web service discovery is discussed. Validation is carried out on the dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The polar winter stratospheric vortex is a coherent structure that undergoes different types of deformation that can be revealed by the geometric invariant moments. Three moments are used—the aspect ratio, the centroid latitude, and the area of the vortex based on stratospheric data from the 40-yr ECMWF Re-Analysis (ERA-40) project—to study sudden stratospheric warmings. Hierarchical clustering combined with data image visualization techniques is used as well. Using the gap statistic, three optimal clusters are obtained based on the three geometric moments considered here. The 850-K potential vorticity field, as well as the vertical profiles of polar temperature and zonal wind, provides evidence that the clusters represent, respectively, the undisturbed (U), displaced (D), and split (S) states of the polar vortex. This systematic method for identifying and characterizing the state of the polar vortex using objective methods is useful as a tool for analyzing observations and as a test for climate models to simulate the observations. The method correctly identifies all previously identified major warmings and also identifies significant minor warmings where the atmosphere is substantially disturbed but does not quite meet the criteria to qualify as a major stratospheric warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diversity of social bees was assessed at 15 sites across five locations of the Nilgiri Biosphere Reserve, Western Ghats, India, from January to December 2007. We also conducted floristic analyses of local vegetation in each site using one-hectare sample plots. All woody species with a dbh (diameter at breast height) : 30 cm were recorded within the plots. A total area of 9.72 ha was assessed for floristic composition. Similarity of floristic composition between sites was determined using the Jaccard's distance measure and a dendrogram constructed based on the hierarchical clustering of floristic dissimilarities between sites. A Bee Importance Index (BII) was developed to give a measure of the bee diversity at each site. This index was a sum of the species richness of bee species in a site and their visitation frequencies to flowers, calculated as mean flower visits hour 1 within 2 focal patches within one hectare plots. The visits of bee species to flowers were also recorded. The Jaccard distance measure indicated that the montane sites were quite dissimilar to the low elevation sites in floristic diversity. The BII was 7-9 for the wet forest sites and ranged from 4-6 for drier forest sites. Seventy three plant species were identified as social bee plants and of them 45% were visited by one species of bee, 37% by two bee species and 18% by more than two bee species, indicating a certain degree of floral specialization among bees.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

K-Means is a popular clustering algorithm which adopts an iterative refinement procedure to determine data partitions and to compute their associated centres of mass, called centroids. The straightforward implementation of the algorithm is often referred to as `brute force' since it computes a proximity measure from each data point to each centroid at every iteration of the K-Means process. Efficient implementations of the K-Means algorithm have been predominantly based on multi-dimensional binary search trees (KD-Trees). A combination of an efficient data structure and geometrical constraints allow to reduce the number of distance computations required at each iteration. In this work we present a general space partitioning approach for improving the efficiency and the scalability of the K-Means algorithm. We propose to adopt approximate hierarchical clustering methods to generate binary space partitioning trees in contrast to KD-Trees. In the experimental analysis, we have tested the performance of the proposed Binary Space Partitioning K-Means (BSP-KM) when a divisive clustering algorithm is used. We have carried out extensive experimental tests to compare the proposed approach to the one based on KD-Trees (KD-KM) in a wide range of the parameters space. BSP-KM is more scalable than KDKM, while keeping the deterministic nature of the `brute force' algorithm. In particular, the proposed space partitioning approach has shown to overcome the well-known limitation of KD-Trees in high-dimensional spaces and can also be adopted to improve the efficiency of other algorithms in which KD-Trees have been used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of 10 virulence genes was examined using polymerase chain reaction (PCR) in 365 European O157 and non-O157 Escherichia coli isolates associated with verotoxin production. Strain-specific PCR data were analysed using hierarchical clustering. The resulting dendrogram clearly separated O157 from non-O157 strains. The former clustered typical high-risk seropathotype (SPT) A strains from all regions, including Sweden and Spain, which were homogenous by Cramer's V statistic, and strains with less typical O157 features mostly from Hungary. The non-O157 strains divided into a high-risk SPTB harbouring O26, O111 and O103 strains, a group pathogenic to pigs, and a group with few virulence genes other than for verotoxin. The data demonstrate SPT designation and selected PCR separated verotoxigenic E. coli of high and low risk to humans; although more virulence genes or pulsed-field gel electrophoresis will need to be included to separate high-risk strains further for epidemiological tracing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The urban heat island is a well-known phenomenon that impacts a wide variety of city operations. With greater availability of cheap meteorological sensors, it is possible to measure the spatial patterns of urban atmospheric characteristics with greater resolution. To develop robust and resilient networks, recognizing sensors may malfunction, it is important to know when measurement points are providing additional information and also the minimum number of sensors needed to provide spatial information for particular applications. Here we consider the example of temperature data, and the urban heat island, through analysis of a network of sensors in the Tokyo metropolitan area (Extended METROS). The effect of reducing observation points from an existing meteorological measurement network is considered, using random sampling and sampling with clustering. The results indicated the sampling with hierarchical clustering can yield similar temperature patterns with up to a 30% reduction in measurement sites in Tokyo. The methods presented have broader utility in evaluating the robustness and resilience of existing urban temperature networks and in how networks can be enhanced by new mobile and open data sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology for discovering the mechanisms and dynamics of protein clustering on solid surfaces is presented. In situ atomic force microscopy images are quantitatively compared to Monte Carlo simulations using cluster statistics to differentiate various models. We study lysozyme adsorption on mica as a model system and find that all surface-supported clusters are mobile, not just the monomers, with diffusion constant inversely related to cluster size. The surface monomer diffusion constant is measured to be D1∼9×10-16  cm2 s-1, such a low value being difficult to measure using other techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses how numerical gradient estimation methods may be used in order to reduce the computational demands on a class of multidimensional clustering algorithms. The study is motivated by the recognition that several current point-density based cluster identification algorithms could benefit from a reduction of computational demand if approximate a-priori estimates of the cluster centres present in a given data set could be supplied as starting conditions for these algorithms. In this particular presentation, the algorithm shown to benefit from the technique is the Mean-Tracking (M-T) cluster algorithm, but the results obtained from the gradient estimation approach may also be applied to other clustering algorithms and their related disciplines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present, pedagogically, the Bayesian approach to composed error models under alternative, hierarchical characterizations; demonstrate, briefly, the Bayesian approach to model comparison using recent advances in Markov Chain Monte Carlo (MCMC) methods; and illustrate, empirically, the value of these techniques to natural resource economics and coastal fisheries management, in particular. The Bayesian approach to fisheries efficiency analysis is interesting for at least three reasons. First, it is a robust and highly flexible alternative to commonly applied, frequentist procedures, which dominate the literature. Second,the Bayesian approach is extremely simple to implement, requiring only a modest addition to most natural-resource economist tool-kits. Third, despite its attractions, applications of Bayesian methodology in coastal fisheries management are few.