15 resultados para herbaceous peony
em CentAUR: Central Archive University of Reading - UK
Resumo:
The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g−1) supplied as Ca(H2PO4)2·H2O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10(OH)2(PO4)6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6H6O24P6Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g−1 was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1–0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g−1 was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability.
Resumo:
Background and aims Medicago sativa L. is widely grown in southern Australia, but is poorly adapted to dry, hot summers. This study aimed to identify perennial herbaceous legumes with greater resistance to drought stress and explore their adaptive strategies. Methods Ten herbaceous perennial legume species/accessions were grown in deep pots in a sandy, low-phosphorus field soil in a glasshouse. Drought stress was imposed by ceasing to water. A companion M. sativa plant in each pot minimised differences in leaf area and water consumption among species. Plants were harvested when stomatal conductance of stressed plants decreased to around 10% of well watered plants. Results A range of responses to drought stress were identified, including: reduced shoot growth; leaf curling; thicker pubescence on leaves and stems; an increased root:shoot ratio; an increase, decrease or no change in root distribution with depth; reductions in specific leaf area or leaf water potential; and osmotic adjustment. The suite of changes differed substantially among species and, less so, among accessions. Conclusions The inter- and intra-specific variability of responses to drought-stress in the plants examined suggests a wide range of strategies are available in perennial legumes to cope with drying conditions, and these could be harnessed in breeding/selection programs.
Resumo:
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.
Resumo:
Many Australian plant species have specific root adaptations for growth in phosphorus-impoverished soils, and are often sensitive to high external P concentrations. The growth responses of native Australian legumes in agricultural soils with elevated P availability in the surface horizons are unknown. The aim of these experiments was to test the hypothesis that increased P concentration in surface soil would reduce root proliferation at depth in native legumes. The effect of P placement on root distribution was assessed for two Australian legumes, Kennedia prorepens F. Muell. and Lotus australis Andrews, and the exotic Medicago sativa L. Three treatments were established in a low-P loam soil: amendment of 0.15 g mono-calcium phosphate in either (i) the top 50 mm (120 µg P g–1) or (ii) the top 500 mm (12 µg P g–1) of soil, and an unamended control. In the unamended soil M. sativa was shallow rooted, with 58% of the root length of in the top 50 mm. K. prorepens and L. australis had a more even distribution down the pot length, with only 4 and 22% of their roots in the 0–50 mm pot section, respectively. When exposed to amendment of P in the top 50 mm, root length in the top 50 mm increased 4-fold for K. prorepens and 10-fold for M. sativa, although the pattern of root distribution did not change for M. sativa. L. australis was relatively unresponsive to P additions and had an even distribution of roots down the pot. Shoot P concentrations differed according to species but not treatment (K. prorepens 2.1 mg g–1, L. australis 2.4 mg g–1, M. sativa 3.2 mg g–1). Total shoot P content was higher for K. prorepens than for the other species in all treatments. In a second experiment, mono-ester phosphatases were analysed from 1-mm slices of soil collected directly adjacent to the rhizosphere. All species exuded phosphatases into the rhizosphere, but addition of P to soil reduced phosphatase activity only for K. prorepens. Overall, high P concentration in the surface soil altered root distribution, but did not reduce root proliferation at depth. Furthermore, the Australian herbaceous perennial legumes had root distributions that enhanced P acquisition from low-P soils.
Resumo:
Transgenic crops are now grown commercially on several million hectares, principally in North America. To date, the predominant crops are maize (corn), soybean, cotton, and potatoes. In addition, there have been field trials of transgenics from at least 52 species including all the major field crops, vegetables, and several herbaceous and woody species. This review summarizes recent data relating to such trials, particularly in terms of the trends away from simple, single gene traits such as herbicide and insect resistance towards more complex agronomic traits such as growth rate and increased photosynthetic efficiency. Much of the recent information is derived from inspection of patent databases, a useful source of information on commercial priorities. The review also discusses the time scale for the introduction of these transgenes into breeding populations and their eventual release as new varieties.
Resumo:
1. We tested three pesticides used for field manipulations of herbivory for direct phytoactive effects on the germination and growth of 14 herbaceous plant species selected to provide a range of life-history strategies and functional groups. 2. We report three companion experiments: (A) Two insecticides, chlorpyrifos (granular soil insecticide) and dimethoate (foliar spray), were applied in fully-factorial combination to pot-germinated individuals of 12 species. (B) The same fully-factorial design was used to test for direct effects on the germination of four herbaceous legumes. (C) The molluscicide, metaldehyde, was tested for direct effects on the germination and growth of six plant species. 3. The insecticides had few significant effects on growth and germination. Dimethoate acted only on growth stimulating Anisantha sterilis, Sonchus asper and Stellaria graminea. In contrast, chlorpyrifos acted on germination increasing the germination of Trifolium dubium and Trifolium pratense. There was also a significant interactive effect of chlorpyrifos and dimethoate on the germination of T pratense. However, all. effects were relatively small in magnitude and explanatory power. The molluscicide had no significant effect on plant germination or growth. 4. The small number and size of direct effects of the pesticides on plant performance is encouraging for the use of these pesticides in manipulative experiments on herbivory, especially for the molluscicide. However, a smatt number of direct (positive) effects of the insecticides on some plant species need to be taken into account when interpreting field manipulations of herbivory with these compounds, and emphasises the importance of conducting tests for direct phyto-active effects. (C) 2004 Elsevier GmbH. All rights reserved.
Resumo:
Phylogenetic hypotheses for the largely South African genus Pelargonium L'Hér. (Geraniaceae) were derived based on DNA sequence data from nuclear, chloroplast and mitochondrial encoded regions. The datasets were unequally represented and comprised cpDNA trnL-F sequences for 152 taxa, nrDNA ITS sequences for 55 taxa, and mtDNA nad1 b/c exons for 51 taxa. Phylogenetic hypotheses derived from the separate three datasets were overall congruent. A single hypothesis synthesising the information in the three datasets was constructed following a total evidence approach and implementing dataset specific stepmatrices in order to correct for substitution biases. Pelargonium was found to consist of five main clades, some with contrasting evolutionary patterns with respect to biogeographic distributions, dispersal capacity, pollination biology and karyological diversification. The five main clades are structured in two (subgeneric) clades that correlate with chromosome size. One of these clades includes a "winter rainfall clade" containing more than 70% of all currently described Pelargonium species, and all restricted to the South African Cape winter rainfall region. Apart from (woody) shrubs and small herbaceous rosette subshrubs, this clade comprises a large "xerophytic" clade including geophytes, stem and leaf succulents, harbouring in total almost half of the genus. This clade is considered to be the result of in situ proliferation, possibly in response to late-Miocene and Pliocene aridification events. Nested within it is a radiation comprising c. 80 species from the geophytic Pelargonium section Hoarea, all characterised by the possession of (a series of) tunicate tubers.
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
The butanol-HCl spectrophotometric assay is widely used for quantifying extractable and insoluble condensed tannins (CT, syn. proanthocyanidins) in foods, feeds, and foliage of herbaceous and woody plants, but the method underestimates total CT content when applied directly to plant material. To improve CT quantitation, we tested various cosolvents with butanol-HCl and found that acetone increased anthocyanidin yields from two forage Lotus species having contrasting procyanidin and prodelphinidin compositions. A butanol-HCl-iron assay run with 50% (v/v) acetone gave linear responses with Lotus CT standards and increased estimates of total CT in Lotus herbage and leaves by up to 3.2-fold over the conventional method run without acetone. The use of thiolysis to determine the purity of CT standards further improved quantitation. Gel-state 13C and 1H–13C HSQC NMR spectra of insoluble residues collected after butanol-HCl assays revealed that acetone increased anthocyanidin yields by facilitating complete solubilization of CT from tissue.
Resumo:
Radiocarbon-dated palaeoecological records from the upland zone of the northern Apennines spanning the Mid-Late Holocene (last 7000 years) have been evaluated using established criteria for detecting anthropogenic impact on the landscape and environment. The integrated palaeoecological records across the study area collectively indicate human interference with natural vegetation succession and landscape modification from at least the Middle Neolithic. These activities resulted in the progressive decline of Abies, Ulmus, Fraxinus and Tilia, and the spread of Fagus, from ∼7000 cal BP, accompanied at various times by evidence for biomass burning, soil erosion, the expansion of shrubland and herbaceous taxa, and the possible cultivation of Olea, Juglans and Castanea. Comparison of these data with the archaeological scheme for the region, and the climate history of the central-western Mediterranean, has revealed that the palaeoecological records broadly support the archaeological evidence, but suggest that several key vegetation changes also coincide with important periods of climate change, especially at ∼7800–5000 cal BP.
Resumo:
This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant–soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.
Resumo:
Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g−1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g−1 soil, while other species required 24 µg P g−1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g−1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g−1 and K. prostrata at ≥48 µg P g−1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.
Resumo:
Six Australian native herbaceous perennial legumes (Lotus australis, Swainsona colutoides, Swainsona swainsonioides, Cullen tenax, Glycine tabacina and Kennedia prorepens) were assessed in the glasshouse for nutritive value, soluble condensed tannins and production of herbage in response to three cutting treatments (regrowth harvested every 4 and 6 weeks and plants left uncut for 12 weeks). The Mediterranean perennial legumes Medicago sativa and Lotus corniculatus were also included. Dry matter (DM) yield of some native legumes was comparable to L. corniculatus, but M. sativa produced more DM than all species except S. swainsonioides after 12 weeks of regrowth. Dry matter yield of all native legumes decreased with increased cutting frequency, indicating a susceptibility to frequent defoliation. Shoot in vitro dry matter digestibility (DMD) was high (>70%) in most native legumes, except G. tabacina (65%) and K. prorepens (55%). Crude protein ranged from 21-28% for all legumes except K. prorepens (12%). More frequent cutting resulted in higher DMD and crude protein in all species, except for the DMD of C. tenax and L. australis, which did not change. Concentrations of soluble condensed tannins were 2-9 g/kg DM in the Lotus spp., 10-18 g/kg DM in K. prorepens and negligible (<1 g/kg) in the other legumes. Of the native species, C. tenax, S. swainsonioides and L. australis showed the most promise for use as forage plants and further evaluation under field conditions is now warranted.
Resumo:
This study analyses the influence of vegetation structure (i.e. leaf area index and canopy cover) and seasonal background changes on moderate-resolution imaging spectrometer (MODIS)-simulated reflectance data in open woodland. Approximately monthly spectral reflectance and transmittance field measurements (May 2011 to October 2013) of cork oak tree leaves (Quercus suber) and of the herbaceous understorey were recorded in the region of Ribatejo, Portugal. The geometric-optical and radiative transfer (GORT) model was used to simulate MODIS response (red, near-infrared) and to calculate vegetation indices, investigating their response to changes in the structure of the overstorey vegetation and to seasonal changes in the understorey using scenarios corresponding to contrasting phenological status (dry season vs. wet season). The performance of normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) is discussed. Results showed that SAVI and EVI were very sensitive to the emergence of background vegetation in the wet season compared to NDVI and that shading effects lead to an opposing trend in the vegetation indices. The information provided by this research can be useful to improve our understanding of the temporal dynamic of vegetation, monitored by vegetation indices.