4 resultados para hemiparesis

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. Objective. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Method. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. Results. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. Conclusion. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. With diffusion-tensor imaging (DTi) it is possible to estimate the structural characteristics of fiber bundles in vivo. This study used DTi to infer damage to the corticospinal tract (CST) and relates this parameter to (a) the level of residual motor ability at least 1 year poststroke and (b) the outcome of intensive motor rehabilitation with constraint-induced movement therapy (CIMT). Objective. To explore the role of CST damage in recovery and CIMT efficacy. Methods. Ten patients with low-functioning hemiparesis were scanned and tested at baseline, before and after CIMT. Lesion overlap with the CST was indexed as reduced anisotropy compared with a CST variability map derived from 26 controls. Residual motor ability was measured through the Wolf Motor Function Test (WMFT) and the Motor Activity Log (MAL) acquired at baseline. CIMT benefit was assessed through the pre—post treatment comparison of WMFT and MAL performance. Results. Lesion overlap with the CST correlated with residual motor ability at baseline, with greater deficits observed in patients with more extended CST damage. Infarct volume showed no systematic association with residual motor ability. CIMT led to significant improvements in motor function but outcome was not associated with the extent of CST damage or infarct volume. Conclusion. The study gives in vivo support for the proposition that structural CST damage, not infarct volume, is a major predictor for residual functional ability in the chronic state. The results provide initial evidence for positive effects of CIMT in patients with varying, including more severe, CST damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motor imagery, passive movement, and movement observation have been suggested to activate the sensorimotor system without overt movement. The present study investigated these three covert movement modes together with overt movement in a within-subject design to allow for a fine-grained comparison of their abilities in activating the sensorimotor system, i.e. premotor, primary motor, and somatosensory cortices. For this, 21 healthy volunteers underwent functional magnetic resonance imaging (fMRI). In addition we explored the abilities of the different covert movement modes in activating the sensorimotor system in a pilot study of 5 stroke patients suffering from chronic severe hemiparesis. Results demonstrated that while all covert movement modes activated sensorimotor areas, there were profound differences between modes and between healthy volunteers and patients. In healthy volunteers, the pattern of neural activation in overt execution was best resembled by passive movement, followed by motor imagery, and lastly by movement observation. In patients, attempted overt execution was best resembled by motor imagery, followed by passive movement, and lastly by movement observation. Our results indicate that for severely hemiparetic stroke patients motor imagery may be the preferred way to activate the sensorimotor system without overt behavior. In addition, the clear differences between the covert movement modes point to the need for within-subject comparisons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent evidence suggests that immobilization of the upper limb for 2–3 weeks induces changes in cortical thickness as well as motor performance. In constraint induced (CI) therapy, one of the most effective interventions for hemiplegia, the non-paretic arm is constrained to enforce the use of the paretic arm in the home setting. With the present study we aimed to explore whether non-paretic arm immobilization in CI therapy induces structural changes in the non-lesioned hemisphere, and how these changes are related to treatment benefit. 31 patients with chronic hemiparesis participated in CI therapy with (N = 14) and without (N = 17) constraint. Motor ability scores were acquired before and after treatment. Diffusion tensor imaging (DTI) data was obtained prior to treatment. Cortical thickness was measured with the Freesurfer software. In both groups cortical thickness in the contralesional primary somatosensory cortex increased and motor function improved with the intervention. However the cortical thickness change was not associated with the magnitude of motor function improvement. Moreover, the treatment effect and the cortical thickness change were not significantly different between the constraint and the non-constraint groups. There was no correlation between fractional anisotropy changes in the non-lesioned hemisphere and treatment outcome. CI therapy induced cortical thickness changes in contralesional sensorimotor regions, but this effect does not appear to be driven by the immobilization of the non-paretic arm, as indicated by the absence of differences between the constraint and the non-constraint groups. Our data does not suggest that the arm immobilization used in CI therapy is associated with noticeable cortical thinning.