10 resultados para habitat models
em CentAUR: Central Archive University of Reading - UK
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
1. Jerdon's courser Rhinoptilus bitorquatus is a nocturnally active cursorial bird that is only known to occur in a small area of scrub jungle in Andhra Pradesh, India, and is listed as critically endangered by the IUCN. Information on its habitat requirements is needed urgently to underpin conservation measures. We quantified the habitat features that correlated with the use of different areas of scrub jungle by Jerdon's coursers, and developed a model to map potentially suitable habitat over large areas from satellite imagery and facilitate the design of surveys of Jerdon's courser distribution. 2. We used 11 arrays of 5-m long tracking strips consisting of smoothed fine soil to detect the footprints of Jerdon's coursers, and measured tracking rates (tracking events per strip night). We counted the number of bushes and trees, and described other attributes of vegetation and substrate in a 10-m square plot centred on each strip. We obtained reflectance data from Landsat 7 satellite imagery for the pixel within which each strip lay. 3. We used logistic regression models to describe the relationship between tracking rate by Jerdon's coursers and characteristics of the habitat around the strips, using ground-based survey data and satellite imagery. 4. Jerdon's coursers were most likely to occur where the density of large (>2 m tall) bushes was in the range 300-700 ha(-1) and where the density of smaller bushes was less than 1000 ha(-1). This habitat was detectable using satellite imagery. 5. Synthesis and applications. The occurrence of Jerdon's courser is strongly correlated with the density of bushes and trees, and is in turn affected by grazing with domestic livestock, woodcutting and mechanical clearance of bushes to create pasture, orchards and farmland. It is likely that there is an optimal level of grazing and woodcutting that would maintain or create suitable conditions for the species. Knowledge of the species' distribution is incomplete and there is considerable pressure from human use of apparently suitable habitats. Hence, distribution mapping is a high conservation priority. A two-step procedure is proposed, involving the use of ground surveys of bush density to calibrate satellite image-based mapping of potential habitat. These maps could then be used to select priority areas for Jerdon's courser surveys. The use of tracking strips to study habitat selection and distribution has potential in studies of other scarce and secretive species.
Resumo:
Habitat-based statistical models relating patterns of presence and absence of species to habitat variables could be useful to resolve conservation-related problems and highlight the causes of population declines. In this paper, we apply such a modelling approach to an endemic amphibian, the Sardinian mountain newt Euproctus platycephalus, considered by IUCN a critically endangered species. Sardinian newts inhabit freshwater habitat in streams, small lakes and pools on the island of Sardinia (Italy). Reported declines of newt populations are not yet supported by quantitative data, however, they are perceived or suspected across the species' historical range. This study represents a first attempt trying to statistically relate habitat characteristics to Sardinian newt occurrence and persistence. Linear regression analysis revealed that newts are more likely to be found in sites with colder water temperature, less riparian vegetation and, marginally, absence of fish. The implications of the results for the conservation of the species are discussed, and suggestions for the short-term management of newt inhabited sites suggested. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The Taita Apalis Apalis fuscigularis (IUCN category: Critically Endangered) is a species endemic to south-eastern Kenya. We assessed population size and habitat use in the three forest sites in which it is known to occur (Ngangao, Chawia and Vuria, totalling 257 ha). The estimate of total population size, derived from distance sampling at 412 sample points, ranged from 310 to 654 individuals, with the northern section of Ngangao fragment having 10-fold higher densities than Chawia (2.47-4.93 versus 0.22-0.41 birds ha(-1)). Ngangao north alone hosted 50% of the global population of the species. The highly degraded Vuria fragment also had moderately high densities (1.63-3.72 birds ha(-1)) suggesting that the species tolerates some human disturbance. Taita Apalis prefers vegetation with abundant climbers, but the predictive power of habitat use models was low, suggesting that habitat structure is not a primary cause for the low density of the species in Chawia. Protecting the subpopulation in the northern section of Ngangao is a priority, as is identifying factors responsible of the low abundance in Chawia, because ameliorating conditions in this large fragment could substantially increase the population of Taita Apalis.
Resumo:
Abstract: Following a workshop exercise, two models, an individual-based landscape model (IBLM) and a non-spatial life-history model were used to assess the impact of a fictitious insecticide on populations of skylarks in the UK. The chosen population endpoints were abundance, population growth rate, and the chances of population persistence. Both models used the same life-history descriptors and toxicity profiles as the basis for their parameter inputs. The models differed in that exposure was a pre-determined parameter in the life-history model, but an emergent property of the IBLM, and the IBLM required a landscape structure as an input. The model outputs were qualitatively similar between the two models. Under conditions dominated by winter wheat, both models predicted a population decline that was worsened by the use of the insecticide. Under broader habitat conditions, population declines were only predicted for the scenarios where the insecticide was added. Inputs to the models are very different, with the IBLM requiring a large volume of data in order to achieve the flexibility of being able to integrate a range of environmental and behavioural factors. The life-history model has very few explicit data inputs, but some of these relied on extensive prior modelling needing additional data as described in Roelofs et al.(2005, this volume). Both models have strengths and weaknesses; hence the ideal approach is that of combining the use of both simple and comprehensive modeling tools.
Resumo:
Pollination services provided by insects play a key role in English crop production and wider ecology. Despite growing evidence of the negative effects of habitat loss on pollinator populations, limited policy support is available to reverse this pressure. One measure that may provide beneficial habitat to pollinators is England’s entry level stewardship agri-environment scheme. This study uses a novel expert survey to develop weights for a range of models which adjust the balance of Entry Level Stewardship options within the current area of spending. The annual costs of establishing and maintaining these option compositions were estimated at £59.3–£12.4 M above current expenditure. Although this produced substantial reduction in private cost:benefit ratios, the benefits of the scheme to pollinator habitat rose by 7–140 %; significantly increasing the public cost:benefit ratio. This study demonstrates that the scheme has significant untapped potential to provide good quality habitat for pollinators across England, even within existing expenditure. The findings should open debate on the costs and benefits of specific entry level stewardship management options and how these can be enhanced to benefit both participants and biodiversity more equitably.
Resumo:
Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs’ usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and flower availability. Additionally, testing SDMs with field surveys should involve multiple collection techniques.
Resumo:
Climate change is expected to increase the frequency of some climatic extremes. These may have drastic impacts on biodiversity, particularly if meteorological thresholds are crossed, leading to population collapses. Should this occur repeatedly, populations may be unable to recover, resulting in local extinctions. Comprehensive time series data on butterflies in Great Britain provide a rare opportunity to quantify population responses to both past severe drought and the interaction with habitat area and fragmentation. Here, we combine this knowledge with future projections from multiple climate models, for different Representative Concentration Pathways (RCPs), and for simultaneous modelled responses to different landscape characteristics. Under RCP8.5, which is associated with ‘business as usual’ emissions, widespread drought-sensitive butterfly population extinctions could occur as early as 2050. However, by managing landscapes and particularly reducing habitat fragmentation, the probability of persistence until mid-century improves from around zero to between 6 and 42% (95% confidence interval). Achieving persistence with a greater than 50% chance and right through to 2100 is possible only under both low climate change (RCP2.6) and semi-natural habitat restoration. Our data show that, for these drought-sensitive butterflies, persistence is achieved more effectively by restoring semi-natural landscapes to reduce fragmentation, rather than simply focusing on increasing habitat area, but this will only be successful in combination with substantial emission reductions.
Resumo:
Accurate knowledge of species’ habitat associations is important for conservation planning and policy. Assessing habitat associations is a vital precursor to selecting appropriate indicator species for prioritising sites for conservation or assessing trends in habitat quality. However, much existing knowledge is based on qualitative expert opinion or local scale studies, and may not remain accurate across different spatial scales or geographic locations. Data from biological recording schemes have the potential to provide objective measures of habitat association, with the ability to account for spatial variation. We used data on 50 British butterfly species as a test case to investigate the correspondence of data-derived measures of habitat association with expert opinion, from two different butterfly recording schemes. One scheme collected large quantities of occurrence data (c. 3 million records) and the other, lower quantities of standardised monitoring data (c. 1400 sites). We used general linear mixed effects models to derive scores of association with broad-leaf woodland for both datasets and compared them with scores canvassed from experts. Scores derived from occurrence and abundance data both showed strongly positive correlations with expert opinion. However, only for occurrence data did these fell within the range of correlations between experts. Data-derived scores showed regional spatial variation in the strength of butterfly associations with broad-leaf woodland, with a significant latitudinal trend in 26% of species. Sub-sampling of the data suggested a mean sample size of 5000 occurrence records per species to gain an accurate estimation of habitat association, although habitat specialists are likely to be readily detected using several hundred records. Occurrence data from recording schemes can thus provide easily obtained, objective, quantitative measures of habitat association.