13 resultados para grid accounting services
em CentAUR: Central Archive University of Reading - UK
Resumo:
Information services play a crucial role in grid environments in that the state information can be used to facilitate the discovery of resources and the services available to meet user requirements, and also to help tune the performance of a grid system. However, the large size and dynamic nature of the grid brings forth a number of challenges for information services. This paper presents PIndex, a grouped peer-to-peer network that can be used for scalable grid information services. PIndex builds on Globus MDS4, but introduces peer groups to dynamically split the large grid information search space into many small sections to enhance its scalability and resilience. PIndex is subsequently modeled with Colored Petri Nets for performance evaluation. The simulation results show that PIndex is scalable and resilient in dealing with a large number of peer nodes.
Resumo:
The service-oriented approach to performing distributed scientific research is potentially very powerful but is not yet widely used in many scientific fields. This is partly due to the technical difficulties involved in creating services and workflows and the inefficiency of many workflow systems with regard to handling large datasets. We present the Styx Grid Service, a simple system that wraps command-line programs and allows them to be run over the Internet exactly as if they were local programs. Styx Grid Services are very easy to create and use and can be composed into powerful workflows with simple shell scripts or more sophisticated graphical tools. An important feature of the system is that data can be streamed directly from service to service, significantly increasing the efficiency of workflows that use large data volumes. The status and progress of Styx Grid Services can be monitored asynchronously using a mechanism that places very few demands on firewalls. We show how Styx Grid Services can interoperate with with Web Services and WS-Resources using suitable adapters.
Resumo:
G-Rex is light-weight Java middleware that allows scientific applications deployed on remote computer systems to be launched and controlled as if they are running on the user's own computer. G-Rex is particularly suited to ocean and climate modelling applications because output from the model is transferred back to the user while the run is in progress, which prevents the accumulation of large amounts of data on the remote cluster. The G-Rex server is a RESTful Web application that runs inside a servlet container on the remote system, and the client component is a Java command line program that can easily be incorporated into existing scientific work-flow scripts. The NEMO and POLCOMS ocean models have been deployed as G-Rex services in the NERC Cluster Grid, and G-Rex is the core grid middleware in the GCEP and GCOMS e-science projects.
Resumo:
Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.
Resumo:
This paper uses spatial economic data from four small English towns to measure the strength of economic integration between town and hinterland and to estimate the magnitude of town-hinterland spill-over effects. Following estimation of local integration indicators and inter-locale flows, sub-regional social accounting matrices (SAMs) are developed to estimate the strength of local employment and output multipliers for various economic sectors. The potential value of a town as a 'sub-pole' in local economic development is shown to be dependent on structural differences in the local economy, such as the particular mix of firms within towns. Although the multipliers are generally small, indicating a low level of local linkages, some sectors, particularly financial services and banking, show consistently higher multipliers for both output and employment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study proposes a conceptual model for customer experience quality and its impact on customer relationship outcomes. Customer experience is conceptualized as the customer’s subjective response to the holistic direct and indirect encounter with the firm, and customer experience quality as its perceived excellence or superiority. Using the repertory grid technique in 40 interviews in B2B and B2C contexts, the authors find that customer experience quality is judged with respect to its contribution to value-in-use, and hence propose that value-in-use mediates between experience quality and relationship outcomes. Experience quality includes evaluations not just of the firm’s products and services but also of peer-to-peer and complementary supplier encounters. In assessing experience quality in B2B contexts, customers place a greater emphasis on firm practices that focus on understanding and delivering value-in-use than is generally the case in B2C contexts. Implications for practitioners’ customer insight processes and future research directions are suggested.
Resumo:
This research establishes the feasibility of using a network centric technology, Jini, to provide a grid framework on which to perform parallel video encoding. A solution was implemented using Jini and obtained real-time on demand encoding of a 480 HD video stream. Further, a projection is made concerning the encoding of 1080 HD video in real-time, as the current grid was not powerful enough to achieve this above 15fps. The research found that Jini is able to provide a number of tools and services highly applicable in a grid environment. It is also suitable in terms of performance and responds well to a varying number of grid nodes. The main performance limiter was found to be the network bandwidth allocation, which when loaded with a large number of grid nodes was unable to handle the traffic.
Resumo:
In any wide-area distributed system there is a need to communicate and interact with a range of networked devices and services ranging from computer-based ones (CPU, memory and disk), to network components (hubs, routers, gateways) and specialised data sources (embedded devices, sensors, data-feeds). In order for the ensemble of underlying technologies to provide an environment suitable for virtual organisations to flourish, the resources that comprise the fabric of the Grid must be monitored in a seamless manner that abstracts away from the underlying complexity. Furthermore, as various competing Grid middleware offerings are released and evolve, an independent overarching monitoring service should act as a corner stone that ties these systems together. GridRM is a standards-based approach that is independent of any given middleware and that can utilise legacy and emerging resource-monitoring technologies. The main objective of the project is to produce a standardised and extensible architecture that provides seamless mechanisms to interact with native monitoring agents across heterogeneous resources.
Resumo:
There is an increasing interest in integrating Java-based, and in particular Jini systems, with the emerging Grid infrastructures. In this paper we explore various ways of integrating the key components of each architecture, their directory and information management services. In the first part of the paper we sketch out the Jini and Grid architectures and their services. We then review the components and services that Jini provides and compare these with those of the Grid. In the second part of the paper we critically explore four ways that Jini and the Grid could interact, here in particular we look at possible scenarios that can provide a seamless interface to a Jini environment for Grid clients and how to use Jini services from a Grid environment. In the final part of the paper we summarise our findings and report on future work being undertaken to integrate Jini and the Grid.
Resumo:
Complex products such as manufacturing equipment have always needed maintenance and repair services. Increasingly, leading manufacturers are integrating products and services to generate increased revenues and achieve customer satisfaction. Designing integrated products and services requires a different approach to new product development and a clear understanding of how customers perceive the value they obtain from actual usage of products and services—so-called value-in-use. However, there is a lack of research on integrated products and services and how they impact customer satisfaction. An exploratory study was undertaken to understand customers’ views on integrated products and services and the value-in-use derived from such offerings. As value-in-use and its impacts are complicated concepts, a technique from psychology—Repertory Grid Technique—was used to gather data in 33 interviews. The interviews allowed a deep understanding of customer views on integrated products and services to be obtained, and a systematic analysis identified the key attributes of value-in-use. In order to probe further, the data were then analyzed using Honey’s procedure, which identified the impact of the attributes of value-in-use on customer satisfaction. Two key attributes—relational dynamic and access—were found to have the most influence on customer satisfaction. This paper contributes to the innovation field by identifying customer needs for integrated products and services and how these impact customer satisfaction. These are key points and need to be fully considered by managers during new product and service development. Similarly, the paper identifies a number of important areas for further research.