108 resultados para grass pollen antigen
em CentAUR: Central Archive University of Reading - UK
Resumo:
The Holocene vegetation history of the Arabian Peninsula is poorly understood, with few palaeobotanical studies to date. At Awafi, Ras al-Khaimah, UAE, a 3.3 m lake sediment sequence records the vegetation development for the period 8500 cal. yr BP to similar to3000 cal. yr BP. delta(13)C isotope, pollen and phytolith analyses indicate that C3 Pooid grassland with a strong woody element existed during the early Holocene (between 8500 and 6000 cal. yr BP) and became replaced by mixed C3 and C4 grasses with a strong C4 Panicoid tall grass element between 5900 and 5400 cal. yr BP. An intense, arid event Occurred at 4100 cal. yr BP when the lake desiccated and was infilled by Aeolian sand. From 4100 cal. yr BP the vegetation was dominated by C4 Chloridoid types and Cyperaceae, suggesting an incomplete vegetation cover and Aeolian dune reactivation owing to increased regional aridity. These data outline the ecosystem dynamics and carbon cycling in response to palaeomon-soon and north-westerly variability during the Holocene. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
Recent sedimentological and palynological research on subfossil Holocene banded sediments from the Severn Estuary Levels suggested seasonality of deposition, registered by variations in mineral grain-size and pollen assemblages between different parts of the bands. Here we provide data that strengthen this interpretation from sampling of modern sediments and pollen deposition on an active mudflat and saltmarsh on the margin of the Severn Estuary, and comparison with a vegetation survey and contemporary records of climate, river and tidal regimes. The results of grain-size analysis indicate deposition of comparatively coarse-grained silts during the relatively cool and windy conditions of winter and comparatively fine-grained sediments during relatively warm and calm summer months. Pollen analysis demonstrates the significance of long-term storage of pollen grains and fern spores in the estuarine waterbody, superimposed on which seasonal variations in pollen inputs from local and regional vegetation remain detectable. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind- pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paran alpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006m. The average number of effective pollen donors was estimated as 12.6. Mother- trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother- trees ranged from 0.35 to 291m ( with an average of 83m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is longdistance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.
Resumo:
Effective use and recycling of manures together with occasional and judicious use of supplementary fertilizing materials forms the basis for management of phosphorus (P) and potassium (K) within organic farming systems. Replicated field trials were established at three sites across the UK to compare the supply of P and K to grass-clover swards cut for silage from a range of fertilizing materials, and to assess the usefulness of routine soil tests for P and K in organic farming systems. None of the fertilizing materials (farmyard manure, rock phosphate, Kali vinasse, volcanic tuff) significantly increased silage yields, nor was P offtake increased. However, farmyard manure and Kali vinasse proved effective sources of K to grass and clover in the short to medium term. Available P (measured as Olsen-P) showed no clear relationship with crop P offtake in these trials. In contrast, available K (measured by ammonium nitrate extraction) proved a useful measurement to predict K availability to crops and support K management decisions.
Resumo:
The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.
Resumo:
Simmental × Holstein-Friesian steers were offered four forage diets. These comprised grass silage (G); proportionately 0·67 grass silage, proportionately 0·33 maize silage (GGM); 0·33 grass silage, 0·67 maize silage ( MMG); maize silage ( M) from 424 (s.d. = 11·5) kg to slaughter at a minimum weight of 560 kg. Forages were mixed and offered ad libitum. Steers were offered 2 kg of a concentrate daily, the concentrate being formulated such that all steers had similar crude protein intakes across dietary treatments. A sample of steers was slaughtered at the beginning of the experimental period to allow the calculation of the rate of gain of the carcass and its components. Carcass dissection of a sample of steers allowed the development of a prediction equation of carcass composition based on thoracic limb dissection of all carcasses. Forage dry matter intake and live-weight gain increased linearly as maize silage replaced grass silage in the forage mixture, resulting in improvements in food conversion ratio (all P = 0·001). Killing-out proportion increased with maize silage inclusion ( P < 0·001) but fat and conformation scores did not differ significantly between diets. However, increasing maize inclusion in the diet resulted in a greater weight ( P = 0·05) and proportion ( P = 0·008) of fat in the carcass, and significant increases in internal fat deposition. The inclusion of maize led to a progressive increase in the daily gains of carcass ( P < 0·001), and significant increases in the daily gains of both fat ( P < 0·001) and lean tissue ( P < 0·001). Fat colour was more yellow in cattle given diets G and GGM than diets MMG and M ( P < 0·001) and colour intensity was lower on diet M than the other three diets ( P < 0·001). There were no significant differences in any aspects of eating quality between diets. Therefore, maize silage has the potential to reduce the time taken for finishing beef animals to achieve slaughter weight with no apparent detrimental effects on subsequent meat quality.
Resumo:
Replacing grass silage with maize silage results in a fundamental change in the ratio of structural to non-structural carbohydrates with commensurate changes in rumen fermentation patterns and nutrient utilisation. This study investigated the effects of feeding four forage mixtures, namely grass silage (G); 67 g/100 g grass silage133 g/100 g maize silage (GGM); 67 g/100 g maize silage133/100 g grass silage (MMG); maize silage (M) to four ruminally and duodenally canulated Holstein Friesian steers. All diets were formulated to be isonitrogenous (22.4 g N/kg DM) using a concentrate mixture. Dietary dry matter (DM) and organic matter (OM) digestibility increased with ascending maize silage inclusion (P,0.1) whereas starch and neutral detergent fibre digestibility declined (P,0.05). Ratio of non-glucogenic to glucogenic precursors in the rumen fluid increased with maize silage inclusion (P,0.01) with a commensurate reduction in rumen pH (P,0.05). Mean circulating concentrations of insulin were greatest and similar in diets MMG and GGM, lower in diet M and lowest in diet G (P,0.01). There were no effects of diet on the mean circulating concentration of growth hormone (GH), or the frequency, amplitude and duration of GH pulses, or the mean circulating concentrations of IGF-1. Increasing levels of DM, OM and starch intakes with the substitution of grass silage with maize silage affected overall digestion, nutrient partitioning and subsequent circulating concentrations of insulin.
Resumo:
Several aspects of terrestrial ecosystems are known to be associated with the North Atlantic Oscillation (NAO) through effects of the NAO on winter climate, but recently the winter NAO has also been shown to be correlated with the following summer climate, including drought. Since drought is a major factor determining grassland primary productivity, the hypothesis was tested that the winter NAO is associated with summer herbage growth through soil moisture availability, using data from the Park Grass Experiment at Rothamsted, UK between 1960 and 1999. The herbage growth rate, mean daily rainfall, mean daily potential evapotranspiration (PE) and the mean and maximum potential soil moisture deficit (PSMD) were calculated between the two annual cuts in early summer and autumn for the unlimed, unfertilized plots. Mean and maximum PSMD were more highly correlated than rainfall or PE with herbage growth rate. Regression analysis showed that the natural logarithm of the herbage growth rate approximately halved for a 250 mm increase in maximum PSMD over the range 50-485 mm. The maximum PSMD was moderately correlated with the preceding winter NAO, with a positive winter NAO index associated with greater maximum PSMD. A positive winter NAO index was also associated with low herbage growth rate, accounting for 22% of the interannual variation in the growth rate. It was concluded that the association between the winter NAO and summer herbage growth rate is mediated by the PSMD in summer.