7 resultados para graphics processing units

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulating spiking neural networks is of great interest to scientists wanting to model the functioning of the brain. However, large-scale models are expensive to simulate due to the number and interconnectedness of neurons in the brain. Furthermore, where such simulations are used in an embodied setting, the simulation must be real-time in order to be useful. In this paper we present NeMo, a platform for such simulations which achieves high performance through the use of highly parallel commodity hardware in the form of graphics processing units (GPUs). NeMo makes use of the Izhikevich neuron model which provides a range of realistic spiking dynamics while being computationally efficient. Our GPU kernel can deliver up to 400 million spikes per second. This corresponds to a real-time simulation of around 40 000 neurons under biologically plausible conditions with 1000 synapses per neuron and a mean firing rate of 10 Hz.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors compare the performance of two types of controllers one based on the multilayered network and the other based on the single layered CMAC network (cerebellar model articulator controller). The neurons (information processing units) in the multi-layered network use Gaussian activation functions. The control scheme which is considered is a predictive control algorithm, along the lines used by Willis et al. (1991), Kambhampati and Warwick (1991). The process selected as a test bed is a continuous stirred tank reactor. The reaction taking place is an irreversible exothermic reaction in a constant volume reactor cooled by a single coolant stream. This reactor is a simplified version of the first tank in the two tank system given by Henson and Seborg (1989).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Empirical mode decomposition (EMD) is a data-driven method used to decompose data into oscillatory components. This paper examines to what extent the defined algorithm for EMD might be susceptible to data format. Two key issues with EMD are its stability and computational speed. This paper shows that for a given signal there is no significant difference between results obtained with single (binary32) and double (binary64) floating points precision. This implies that there is no benefit in increasing floating point precision when performing EMD on devices optimised for single floating point format, such as graphical processing units (GPUs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of constructing a transformation, or regrading, of a discrete data set such that the histogram of the transformed data matches a given reference histogram is commonly known as histogram modification. The technique is widely used for image enhancement and normalization. A method which has been previously derived for producing such a regrading is shown to be “best” in the sense that it minimizes the error between the cumulative histogram of the transformed data and that of the given reference function, over all single-valued, monotone, discrete transformations of the data. Techniques for smoothed regrading, which provide a means of balancing the error in matching a given reference histogram against the information lost with respect to a linear transformation are also examined. The smoothed regradings are shown to optimize certain cost functionals. Numerical algorithms for generating the smoothed regradings, which are simple and efficient to implement, are described, and practical applications to the processing of LANDSAT image data are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalityprocessing of multiple surface morphemes. Here we report the first study to investigate morphological processing where derivational steps are not overtly marked (e.g., bridge-N>bridge-V) i.e., zero-derivation ( Aronoff, 1980). We compared the processing of one-step (soakingprocessing, such as the left inferior frontal gyrus (LIFG). Critically, activation was also more pronounced for two-step compared to one-step forms. Since both types of derived words have the same surface structure, our findings suggest that morphological processing is based on underlying morphological complexity, independent of overt affixation. This study is the first to provide evidence for the processing of zero derivation, and demonstrates that morphological processing cannot be reduced to surface form-based segmentation.