50 resultados para graphical attractiveness
em CentAUR: Central Archive University of Reading - UK
Resumo:
A simple "Y" shaped olfactometer was used in laboratory studies on the olfactory attractiveness of mixtures in various proportions of industrial analogues of some host plant and conspecific-based semiochemicals, or their combinations with banana rhizome, to the banana weevil. The aim was to identify factors that influence their attractiveness to the weevil, and consider the possibility for their use as lures for trapping the weevil in the field. Cosmopolites sordidus was attracted to the mixtures at specific concentrations and proportions of constituent chemicals. 6-methylhept-5-en-2-one was only attractive on its own at 1 µl/100 ml and in mixture with 4- mercaptophenol, but not at 10 µl, 0.01 µl, or in combination with banana rhizome. 4-mercaptohpenol and 2-n-butylfuran, which were compatible with most host plant-based chemicals and were attractive as a mixture, were perceived to be key elements in the composition of attractants to the weevil. It was concluded that in addition to the composition, other factors that may determine the attractiveness or otherwise of a mixture to C. sordidus are the proportions and concentrations of the constituent chemicals.
Resumo:
Growing pot poinsettia and similar crops involves careful crop monitoring and management to ensure that height specifications are met. Graphical tracking represents a target driven approach to decision support with simple interpretation. HDC (Horticultural Development Council) Poinsettia Tracker implements a graphical track based on the Generalised Logistic Curve, similar to that of other tracking packages. Any set of curve parameters can be used to track crop progress. However, graphical tracks must be expected to be site and cultivar specific. By providing a simple Curve fitting function, growers can easily develop their own site and variety specific ideal tracks based on past records with increasing quality as more seasons' data are added. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Graphical tracking is a technique for crop scheduling where the actual plant state is plotted against an ideal target curve which encapsulates all crop and environmental characteristics. Management decisions are made on the basis of the position of the actual crop against the ideal position. Due to the simplicity of the approach it is possible for graphical tracks to be developed on site without the requirement for controlled experimentation. Growth models and graphical tracks are discussed, and an implementation of the Richards curve for graphical tracking described. In many cases, the more intuitively desirable growth models perform sub-optimally due to problems with the specification of starting conditions, environmental factors outside the scope of the original model and the introduction of new cultivars. Accurate specification for a biological model requires detailed and usually costly study, and as such is not adaptable to a changing cultivar range and changing cultivation techniques. Fitting of a new graphical track for a new cultivar can be conducted on site and improved over subsequent seasons. Graphical tracking emphasises the current position relative to the objective, and as such does not require the time consuming or system specific input of an environmental history, although it does require detailed crop measurement. The approach is flexible and could be applied to a variety of specification metrics, with digital imaging providing a route for added value. For decision making regarding crop manipulation from the observed current state, there is a role for simple predictive modelling over the short term to indicate the short term consequences of crop manipulation.
Resumo:
Objective: To determine whether attractiveness and success of surgical outcome differ according to the timing of cleft lip repair. Design: Three experiments were conducted: (1) surgeons rated postoperative medical photographs of infants having either neonatal or 3-month lip repair; (2) lay panelists rated the same photographs; (3) lay panelists rated dynamic video displays of the infants made at 12 months. Normal comparison infants were also rated. The order of stimuli was randomized, and panelists were blind to timing of lip repair and the purposes of the study. Setting: Four U.K. regional centers for cleft lip and palate. Participants: Infants with isolated clefts of the lip, with and without palate. Intervention: Early lip repair was conducted at median age 4 days (inter-quartile range [IQR] = 4), and late repair at 104 days (IQR = 57). Main Outcome Measures: Ratings of surgical outcome (Experiment 1 only) and attractiveness (all experiments) on 5-point Likert scales. Results: In Experiment 1 success of surgical outcome was comparable for early and late repair groups (difference = -0.08; 95% confidence interval [CI] = -0.43 to 0.28; p = .66). In all three experiments, attractiveness ratings were comparable for the two groups. Differences were, respectively, 0.10 (95% CI = -2.3 to 0.44, p = .54); -0.11 (95% CI = -0.42 to -0.19, p = .54); and 0.08 (95% CI = -0.11 to 0.28, p =.41). Normal infants were rated more attractive than index infants (difference = 0.38; 95% CI = 0.24 to 0.52; p < .001). Conclusion: Neonatal repair for cleft of the lip confers no advantage over repair at 3 months in terms of perceived infant attractiveness or success of surgical outcome.
Resumo:
When performing data fusion, one often measures where targets were and then wishes to deduce where targets currently are. There has been recent research on the processing of such out-of-sequence data. This research has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships among the algorithms so that any approximations made are explicit. Results for a multi-sensor scenario involving out-of-sequence data association are used to illustrate the utility of this approach in a specific context.
Resumo:
A new method of clear-air turbulence (CAT) forecasting based on the Lighthill–Ford theory of spontaneous imbalance and emission of inertia–gravity waves has been derived and applied on episodic and seasonal time scales. A scale analysis of this shallow-water theory for midlatitude synoptic-scale flows identifies advection of relative vorticity as the leading-order source term. Examination of leading- and second-order terms elucidates previous, more empirically inspired CAT forecast diagnostics. Application of the Lighthill–Ford theory to the Upper Mississippi and Ohio Valleys CAT outbreak of 9 March 2006 results in good agreement with pilot reports of turbulence. Application of Lighthill–Ford theory to CAT forecasting for the 3 November 2005–26 March 2006 period using 1-h forecasts of the Rapid Update Cycle (RUC) 2 1500 UTC model run leads to superior forecasts compared to the current operational version of the Graphical Turbulence Guidance (GTG1) algorithm, the most skillful operational CAT forecasting method in existence. The results suggest that major improvements in CAT forecasting could result if the methods presented herein become operational.
Resumo:
The systems used for the procurement of buildings are organizational systems. They involve people in a series of strategic decisions, and a pattern of roles, responsibilities and relationships that combine to form the organizational structure of the project. To ensure effectiveness of the building team, this organizational structure needs to be contingent upon the environment within which the construction project takes place. In addition, a changing environment means that the organizational structure within a project needs to be responsive, and dynamic. These needs are often not satisfied in the construction industry, due to the lack of analytical tools with which to analyse the environment and to design appropriate temporary organizations. This paper presents two techniques. First is the technique of "Environmental Complexity Analysis", which identifies the key variables in the environment of the construction project. These are classified as Financial, Legal, Technological, Aesthetic and Policy. It is proposed that their identification will set the parameters within which the project has to be managed. This provides a basis for the project managers to define the relevant set of decision points that will be required for the project. The Environmental Complexity Analysis also identifies the project's requirements for control systems concerning Budget, Contractual, Functional, Quality and Time control. The process of environmental scanning needs to be done at regular points during the procurement process to ensure that the organizational structure is adaptive to the changing environment. The second technique introduced is the technique of "3R analysis", being a graphical technique for describing and modelling Roles, Responsibilities and Relationships. A list of steps is introduced that explains the procedure recommended for setting up a flexible organizational structure that is responsive to the environment of the project. This is by contrast with the current trend towards predetermined procurement paths that may not always be in the best interests of the client.
Resumo:
Recent work has suggested that for some tasks, graphical displays which visually integrate information from more than one source offer an advantage over more traditional displays which present the same information in a separated format. Three experiments are described which investigate this claim using a task which requires subjects to control a dynamic system. In the first experiment, the integrated display is compared to two separated displays, one an animated mimic diagram, the other an alphanumeric display. The integrated display is shown to support better performance in a control task, but experiment 2 shows that part of this advantage may be due to its analogue nature. Experiment 3 considers performance on a fault detection task, and shows no difference between the integrated and separated displays. The paper concludes that previous claims made for integrated displays may not generalize from monitoring to control tasks.
Resumo:
Europe's widely distributed climate modelling expertise, now organized in the European Network for Earth System Modelling (ENES), is both a strength and a challenge. Recognizing this, the European Union's Program for Integrated Earth System Modelling (PRISM) infrastructure project aims at designing a flexible and friendly user environment to assemble, run and post-process Earth System models. PRISM was started in December 2001 with a duration of three years. This paper presents the major stages of PRISM, including: (1) the definition and promotion of scientific and technical standards to increase component modularity; (2) the development of an end-to-end software environment (graphical user interface, coupling and I/O system, diagnostics, visualization) to launch, monitor and analyse complex Earth system models built around state-of-art community component models (atmosphere, ocean, atmospheric chemistry, ocean bio-chemistry, sea-ice, land-surface); and (3) testing and quality standards to ensure high-performance computing performance on a variety of platforms. PRISM is emerging as a core strategic software infrastructure for building the European research area in Earth system sciences. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. Weexamined flower visitation and seed set of 10 different plant species fromfive European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. Wefound evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.
Resumo:
Previous work has established the value of goal-oriented approaches to requirements engineering. Achieving clarity and agreement about stakeholders’ goals and assumptions is critical for building successful software systems and managing their subsequent evolution. In general, this decision-making process requires stakeholders to understand the implications of decisions outside the domains of their own expertise. Hence it is important to support goal negotiation and decision making with description languages that are both precise and expressive, yet easy to grasp. This paper presents work in progress to develop a pattern language for describing goal refinement graphs. The language has a simple graphical notation, which is supported by a prototype editor tool, and a symbolic notation based on modal logic.
Resumo:
This paper describes a novel methodology for observing and analysing collaborative design by using the concepts of cognitive dimensions related to concept-based misfit analysis. The study aims at gaining an insight into support for creative practice of graphical communication in collaborative design processes of designers while sketching within a shared white board and audio conferencing environment. Empirical data on design processes have been obtained from observation of groups of student designers solving an interior space-planning problem of a lounge-diner in a shared virtual environment. The results of the study provide recommendations for the design and development of interactive systems to support such collaborative design activities.