5 resultados para glyoxal
em CentAUR: Central Archive University of Reading - UK
Resumo:
Accumulation of advanced glycation end-products (AGEs) on proteins is associated with the development of diabetic complications. Although the overall extent of modification of protein by AGEs is limited, localization of these modifications at a few critical sites might have a significant effect on protein structure and function. In the present study, we describe the sites of modification of RNase by glyoxal under physiological conditions. Arg(39) and Arg(85), which are closest to the active site of the enzyme, were identified as the primary sites of formation of the glyoxal-derived dihydroxyimidazolidine and hydroimidazolone adducts. Lower amounts of modification were detected at Arg(10), while Arg(33) appeared to be unmodified. We conclude that dihydroxyimidazolidine adducts are the primary products of modification of protein by glyoxal, that Arg(39) and Arg(85) are the primary sites of modification of RNase by glyoxal, and that modification of arginine residues during Maillard reactions of proteins is a highly selective process.
Resumo:
Acrylamide and pyrazine formation, as influenced by the incorporation of different amino acids, was investigated in sealed low-moisture asparagine-glucose model systems. Added amino acids, with the exception of glycine and cysteine and at an equimolar concentration to asparagine, increased the rate of acrylamide formation. The strong correlation between the unsubstituted pyrazine and acrylamide suggests the promotion of the formation of Maillard reaction intermediates, and in particular glyoxal, as the determining mode of-action. At increased amino acid concentrations, diverse effects were observed. The initial rates of acrylamide formation remained high for valine, alanine, phenylalanine, tryptophan, glutamine, and Ieucine, while a significant mitigating effect, as evident from the acrylamide yields after 60 min of heating at 160 degrees C, was observed for proline, tryptophan, glycine, and cysteine. The secondary amine containing amino acids, proline and tryptophan, had the most profound mitigating effect on acrylamide after 60 min of heating. The relative importance of the competing effect of added amino acids for alpha-dicarbonyls and acrylamide-amino, acid alkylation reactions is discussed and accompanied by data on the relative formation rates of selected amino acid-AA adducts.
Resumo:
The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed.
Resumo:
Proteomic analysis using electrospray liquid chromatography-mass spectrometry (ESI-LC-MS) has been used to compare the sites of glycation (Amadori adduct formation) and carboxymethylation of RNase and to assess the role of the Amadori adduct in the formation of the advanced glycation end-product (AGE), N-is an element of-(carboxymethyl)lysine (CIVIL). RNase (13.7 mg/mL, 1 mM) was incubated with glucose (0.4 M) at 37 degreesC for 14 days in phosphate buffer (0.2 M, pH 7.4) under air. On the basis of ESI-LC-MS of tryptic peptides, the major sites of glycation of RNase were, in order, K41, K7, K1, and K37. Three of these, in order, K41, K7, and K37 were also the major sites of CIVIL formation. In other experiments, RNase was incubated under anaerobic conditions (1 mM DTPA, N-2 purged) to form Amadori-modified protein, which was then incubated under aerobic conditions to allow AGE formation. Again, the major sites of glycation were, in order, K41, K7, K1, and K37 and the major sites of carboxymethylation were K41, K7, and K37. RNase was also incubated with 1-5 mM glyoxal, substantially more than is formed by autoxidation of glucose under experimental conditions, but there was only trace modification of lysine residues, primarily at K41. We conclude the following: (1) that the primary route to formation of CIVIL is by autoxidation of Amadori adducts on protein, rather than by glyoxal generated on autoxidation of glucose; and (2) that carboxymethylation, like glycation, is a site-specific modification of protein affected by neighboring amino acids and bound ligands, such as phosphate or phosphorylated compounds. Even when the overall extent of protein modification is low, localization of a high proportion of the modifications at a few reactive sites might have important implications for understanding losses in protein functionality in aging and diabetes and also for the design of AGE inhibitors.
Resumo:
The bifidobacterial β-galactosidase BbgIV was immobilised on DEAE-Cellulose and Q-Sepharose via ionic binding and on amino-ethyl- and glyoxal-agarose via covalent attachment, and was then used to catalyse the synthesis of galactooligosaccharides (GOS). The immobilisation yield exceeded 90 % using ionic binding, while it was low using aminoethyl agarose (25 – 28 %) and very low using glyoxal agarose (< 3 %). This was due to the mild conditions and absence of chemical reagents in ionic binding, compared to covalent attachment. The maximum GOS yield obtained using DEAE-Cellulose and Q-Sepharose was similar to that obtained using free BbgIV (49 – 53 %), indicating the absence of diffusion limitation and mass transfer issues. For amino-ethyl agarose, however, the GOS yield obtained was lower (42 – 44 %) compared to that obtained using free BbgIV. All the supports tried significantly (P < 0.05) increased the BbgIV operational stability and the GOS synthesis productivity up to 55 °C. Besides, six successive GOS synthesis batches were performed using BbgIV immobilised on Q-Sepharose; all resulted in similar GOS yields, indicating the possibility of developing a robust synthesis process. Overall, the GOS synthesis operation performance using BbgIV was improved by immobilising the enzyme onto solid supports, in particular on Q-Sepharose