68 resultados para globalization-orientation
em CentAUR: Central Archive University of Reading - UK
Resumo:
We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.
Resumo:
The adsorption and hydrogenation of acrolein on the Ag(111) surface has been investigated by high resolution synchrotron XPS, NEXAFS, and temperature programmed reaction. The molecule adsorbs intact at all coverages and its adsorption geometry is critically important in determining chemoselectivity toward the formation of allyl alcohol, the desired but thermodynamically disfavored product. In the absence of hydrogen adatoms (H(a)), acrolein lies almost parallel to the metal surface; high coverages force the C=C bond to tilt markedly, likely rendering it less vulnerable toward reaction with hydrogen adatoms. Reaction with coadsorbed H(a) yields allyl alcohol, propionaldehyde, and propanol, consistent with the behavior of practical dispersed Ag catalysts operated at atmospheric pressure: formation of all three hydrogenation products is surface reaction rate limited. Overall chemoselectivity is strongly influenced by secondary reactions of allyl alcohol. At low H(a) coverages, the C=C bond in the newly formed allyl alcohol molecule is strongly tilted with respect to the surface, rendering it immune to attack by H(a) and leading to desorption of the unsaturated alcohol. In contrast with this, at high H(a) coverages, the C=C bond in allyl alcohol lies almost parallel to the surface, undergoes hydrogenation by H(a), and the saturated alcohol (propanol) desorbs.
Resumo:
Feathers are composed of a structure that, whilst being very light, is able to withstand the large aerodynamic forces exerted upon them during flight. To explore the contribution of molecular orientation to feather keratin mechanical properties, we have examined the nanoscopic organisation of the keratin molecules by X-ray diffraction techniques and have confirmed a link between this and the Young's modulus of the feather rachis. Our results indicate that along the rachis length, from calamus to tip, the keratin molecules become more aligned than at the calamus before returning to a state of higher mis-orientation towards the tip of the rachis. We have also confirmed the general trend of increasing Young's modulus with distance along the rachis. Furthermore, we report a distinct difference in the patterns of orientation of beta-keratin in the feathers of flying and flightless birds. The trend for increased modulus along the feathers of volant birds is absent in the flightless ostrich.
Resumo:
A fully automated procedure to extract and to image local fibre orientation in biological tissues from scanning X-ray diffraction is presented. The preferred chitin fibre orientation in the flow sensing system of crickets is determined with high spatial resolution by applying synchrotron radiation based X-ray microbeam diffraction in conjunction with advanced sample sectioning using a UV micro-laser. The data analysis is based on an automated detection of azimuthal diffraction maxima after 2D convolution filtering (smoothing) of the 2D diffraction patterns. Under the assumption of crystallographic fibre symmetry around the morphological fibre axis, the evaluation method allows mapping the three-dimensional orientation of the fibre axes in space. The resulting two-dimensional maps of the local fibre orientations - together with the complex shape of the flow sensing system - may be useful for a better understanding of the mechanical optimization of such tissues.
Resumo:
The visuospatial perceptual abilities of individuals with Williams syndrome (WS) were investigated in two experiments. Experiment I measured the ability of participants to discriminate between oblique and between nonoblique orientations. Individuals with WS showed a smaller effect of obliqueness in response time, when compared to controls matched for nonverbal mental age. Experiment 2 investigated the possibility that this deviant pattern of orientation discrimination accounts for the poor ability to perform mental rotation in WS (Farran, Jarrold, & Gathercole, 2001). A size transformation task was employed, which shares the image transformation requirements of mental rotation, but not the orientation discrimination demands. Individuals with WS performed at the same level as controls. The results suggest a deviance at the perceptual level in WS, in processing orientation, which fractionates from the ability to mentally transform images.
Resumo:
Williams syndrome (WS) is a rare genetic disorder with a unique cognitive profile in which verbal abilities are markedly stronger than visuospatial abilities. This study investigated the claim that orientation coding is a specific deficit within the visuospatial domain in WS. Experiment I employed a simplified version of the Benton Judgement of Line Orientation task and a control, length-matching task. Results demonstrated comparable levels of orientation matching performance in the group with WS and a group of typically developing (TD) controls matched by nonverbal ability, although it is possible that floor effects masked group differences. A group difference was observed in the length-matching task due to stronger performance from the control group. Experiment 2 employed an orientation-discrimination task and a length-discrimination task. Contrary to previous reports, the results showed that individuals with WS were able to code by orientation to a comparable level as that of their matched controls. This demonstrates that, although some impairment is apparent, orientation coding does not represent a specific deficit in WS. Comparison between Experiments I and 2 suggests that orientation coding is vulnerable to task complexity. However, once again, this vulnerability does not appear to be specific to the population with WS, as it was also apparent in the TD controls.
Resumo:
Single point interaction haptic devices do not provide the natural grasp and manipulations found in the real world, as afforded by multi-fingered haptics. The present study investigates a two-fingered grasp manipulation involving rotation with and without force feedback. There were three visual cue conditions: monocular, binocular and projective lighting. Performance metrics of time and positional accuracy were assessed. The results indicate that adding haptics to an object manipulation task increases the positional accuracy but slightly increases the overall time taken.
Resumo:
This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.