5 resultados para genotype distribution
em CentAUR: Central Archive University of Reading - UK
Resumo:
The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m(2) in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P < 0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length.
Resumo:
Background: The lipid-modulatory effects of high intakes of the fish-oil fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well established and likely to contribute to cardioprotective benefits. Objectives: We aimed to determine the effect of moderate EPA and DHA intakes (< 2 g EPA + DHA/d) on the plasma fatty acid profile, lipid and apolipoprotein concentrations, lipoprotein subclass distribution, and markers of oxidative status. We also aimed to examine the effect of age, sex, and apolipoprotein E (APOE) genotype on the observed responses. Design: Three hundred twelve adults aged 20-70 y, who were prospectively recruited according to age, sex, and APOE genotype, completed a double-blind placebo-controlled crossover study. Participants consumed control oil, 0.7 g EPA + DHA/d (0.7FO), and 1.8 g EPA + DHA/d (1.8FO) capsules in random order, each for an 8-wk intervention period, separated by 12-wk washout periods. Results: In the group as a whole, 8% and 11% lower plasma triacylglycerol concentrations were evident after 0.7FO and 1.8FO, respectively (P < 0.001): significant sex x treatment (P = 0.038) and sex x genotype x treatment (P = 0.032) interactions were observed, and the greatest triacylglycerol-lowering responses (reductions of 15% and 23% after 0.7FO and 1.8FO, respectively) were evident in APOE4 men. Furthermore, lower VLDL-cholesterol (P = 0.026) and higher LDL-cholesterol (P = 0.010), HDL-cholesterol (P < 0.001), and HDL2 (P < 0.001) concentrations were evident after fish-oil intervention. Conclusions: Supplements providing EPA + DHA at doses as low as 0.7 g/d have a significant effect on the plasma lipid profile. The results of the current trial, which used a prospective recruitment approach to examine the responses in population subgroups, are indicative of a greater triacylglycerol-lowering action of long-chain n-3 polyunsaturated fatty acids in males than in females.
Resumo:
Background: The lipid-modulatory effects of high intakes of the fish-oil fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well established and likely to contribute to cardioprotective benefits. Objectives: We aimed to determine the effect of moderate EPA and DHA intakes (< 2 g EPA + DHA/d) on the plasma fatty acid profile, lipid and apolipoprotein concentrations, lipoprotein subclass distribution, and markers of oxidative status. We also aimed to examine the effect of age, sex, and apolipoprotein E (APOE) genotype on the observed responses. Design: Three hundred twelve adults aged 20-70 y, who were prospectively recruited according to age, sex, and APOE genotype, completed a double-blind placebo-controlled crossover study. Participants consumed control oil, 0.7 g EPA + DHA/d (0.7FO), and 1.8 g EPA + DHA/d (1.8FO) capsules in random order, each for an 8-wk intervention period, separated by 12-wk washout periods. Results: In the group as a whole, 8% and 11% lower plasma triacylglycerol concentrations were evident after 0.7FO and 1.8FO, respectively (P < 0.001): significant sex x treatment (P = 0.038) and sex x genotype x treatment (P = 0.032) interactions were observed, and the greatest triacylglycerol-lowering responses (reductions of 15% and 23% after 0.7FO and 1.8FO, respectively) were evident in APOE4 men. Furthermore, lower VLDL-cholesterol (P = 0.026) and higher LDL-cholesterol (P = 0.010), HDL-cholesterol (P < 0.001), and HDL2 (P < 0.001) concentrations were evident after fish-oil intervention. Conclusions: Supplements providing EPA + DHA at doses as low as 0.7 g/d have a significant effect on the plasma lipid profile. The results of the current trial, which used a prospective recruitment approach to examine the responses in population subgroups, are indicative of a greater triacylglycerol-lowering action of long-chain n-3 polyunsaturated fatty acids in males than in females.
Resumo:
A range of physiological parameters (canopy light transmission, canopy shape, leaf size, flowering and flushing intensity) were measured from the International Clone Trial, typically over the course of two years. Data were collected from six locations, these being: Brazil, Ecuador, Trinidad, Venezuela, Côte d’Ivoire and Ghana. Canopy shape varied significantly between clones, although it showed little variation between locations. Genotypic variation in leaf size was differentially affected by the growth location; such differences appeared to underlie a genotype by environment interaction in relation to canopy light transmission. Flushing data were recorded at monthly intervals over the course of a year. Within each location, a significant interaction was observed between genotype and time of year, suggesting that some genotypes respond to a greater extent than others to environmental stimuli. A similar interaction was observed for flowering data, where significant correlations were found between flowering intensity and temperature in Brazil and flowering intensity and rainfall in Côte d’Ivoire. The results demonstrate the need for local evaluation of cocoa clones and also suggest that the management practices for particular planting material may need to be fine-tuned to the location in which they are cultivated.
Resumo:
Background and Aims Leafy vegetable Brassica crops are an important source of dietary calcium (Ca) and magnesium (Mg) and represent potential targets for increasing leaf Ca and Mg concentrations through agronomy or breeding. Although the internal distribution of Ca and Mg within leaves affects the accumulation of these elements, such data are not available for Brassica. The aim of this study was to characterize the internal distribution of Ca and Mg in the leaves of a vegetable Brassica and to determine the effects of altered exogenous Ca and Mg supply on this distribution. Methods Brassica rapa ssp. trilocularis ‘R-o-18’ was grown at four different Ca:Mg treatments for 21 d in a controlled environment. Concentrations of Ca and Mg were determined in fully expanded leaves using inductively coupled plasma-mass spectrometry (ICP-MS). Internal distributions of Ca and Mg were determined in transverse leaf sections at the base and apex of leaves using energy-dispersive X-ray spectroscopy (EDS) with cryo-scanning electron microscopy (cryo-SEM). Key Results Leaf Ca and Mg concentrations were greatest in palisade and spongy mesophyll cells, respectively, although this was dependent on exogenous supply. Calcium accumulation in palisade mesophyll cells was enhanced slightly under high Mg supply; in contrast, Mg accumulation in spongy mesophyll cells was not affected by Ca supply. Conclusions The results are consistent with Arabidopsis thaliana and other Brassicaceae, providing phenotypic evidence that conserved mechanisms regulate leaf Ca and Mg distribution at a cellular scale. The future study of Arabidopsis gene orthologues in mutants of this reference B. rapa genotype will improve our understanding of Ca and Mg homeostasis in plants and may provide a model-to-crop translation pathway for targeted breeding.