8 resultados para genetic base
em CentAUR: Central Archive University of Reading - UK
Resumo:
The level of Pasteuria penetrans spore attachment on juveniles of Meloidogyne javanica, M. incognita and M. arenaria was greater when the nematodes were exposed to spores of a population that had been multiplied on a mixture of these Meloidogyne species than where Pasteuria was multiplied on a single nematode population. When tomato plants were inoculated with M. javanica, M. incognita and M. arenaria juveniles encumbered with spores produced on different Meloidogyne species, tile incidence of root galling and productivity of egg-masses were less, and this was also reflected in increased infection of females of M. javanica, M. incognita and M. arenaria compared to the infection by Pasteuria populations produced on single nematode species and therefore assumed to have a narrower genetic base.
Resumo:
Data from three cocoa (Theobroma cacao) clonal selection trials are used to investigate the genetic and environmental components of variation in yield and the percentage of total pods affected by black pod disease (Phytophtora pod rot). Simulations based on these estimated components of variation are then used to discuss the best choice in future of numbers of clones, replicates and years of harvest to maximise selection advances in the traits measured. The three main conclusions are the need to increase the number of clones at the expense of the number of replicates of each clone, the diminishing returns from additional years of harvesting and the importance of widening the genetic base of the clones chosen to be tested.
Resumo:
Ancient DNA (aDNA) research has long depended on the power of PCR to amplify trace amounts of surviving genetic material from preserved specimens. While PCR permits specific loci to be targeted and amplified, in many ways it can be intrinsically unsuited to damaged and degraded aDNA templates. PCR amplification of aDNA can produce highly-skewed distributions with significant contributions from miscoding lesion damage and non-authentic sequence artefacts. As traditional PCR-based approaches have been unable to fully resolve the molecular nature of aDNA damage over many years, we have developed a novel single primer extension (SPEX)-based approach to generate more accurate sequence information. SPEX targets selected template strands at defined loci and can generate a quantifiable redundancy of coverage; providing new insights into the molecular nature of aDNA damage and fragmentation. SPEX sequence data reveals inherent limitations in both traditional and metagenomic PCR-based approaches to aDNA, which can make current damage analyses and correct genotyping of ancient specimens problematic. In contrast to previous aDNA studies, SPEX provides strong quantitative evidence that C U-type base modifications are the sole cause of authentic endogenous damage-derived miscoding lesions. This new approach could allow ancient specimens to be genotyped with unprecedented accuracy.
Resumo:
Gomortega keule (Molina) Baillon is an endangered, rare species, the only representative of its genus, and endemic to Central Chile. Populations of this tree are now fragmented and few individuals can be found in any of them. Genetic diversity was studied in 33 individuals from three populations in Cauquenes, a coastal mountain area (35°58'S-72°41'W). Fifteen InterSimple Sequence Repeat primers were used to determine the degree of similarity between and within populations. This revealed that 30% of the variation exhibited was between populations while 70% was within; nevertheless individuals were clearly clustered in a pattern which reflected a narrow base of diversity. Three other species from the Laurales order were used in order to provide an external reference as to the degree of diversity. In addition, an external wild population from the native species, Peumus boldus, was used to verify the utility of the markers. We show that the primers are effective in quickly giving an estimate of the degree of diversity of a population, thus giving important topical information relevant to preserving endangered species. Aspects of the conservation and management policy for the species in order to maintain the remaining populations and to preserve the genetic resources are discussed.
Resumo:
We have developed a new simple method for transport, storage, and analysis of genetic material from the corals Agaricia agaricites, Dendrogyra cylindrica, Eusmilia ancora, Meandrina meandrites, Montastrea annularis, Porites astreoides, Porites furcata, Porites porites, and Siderastrea siderea at room temperature. All species yielded sufficient DNA from a single FTA(R) card (19 mug-43 ng) for subsequent PCR amplification of both coral and zooxanthellar DNA. The D1 and D2 variable region of the large Subunit rRNA gene (LSUrDNA) was amplified from the DNA of P. furcata and S. siderea by PCR. Electrophoresis yielded two major DNA bands: an 800-base pair (bp) DNA, which represented the coral ribosomal RNA (rRNA) gene, and a 600-bp DNA, which represented the zooxanthellar srRNA gene. Extraction of DNA from the bands yielded between 290 mug total DNA (S. siderea coral DNA) and 9 mug total DNA (P. furcata zooxanthellar DNA). The ability to transport and store genetic material from scleractinian corals without resort to laboratory facilities in the field allows for the molecular Study of a far wider range and variety of coral sites than have been studied to date. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Diverticular disease (DD) is an age-related disorder of the large bowel which may affect half of the population over the age of 65 in the UK. This high prevalence ranks it as one of the most common bowel disorders in western nations. The majority of patients remain asymptomatic but there are associated life-threatening co-morbidities, which, given the large numbers of people with DD, translates into a considerable number of deaths per annum. Despite this public health burden, relatively little seems to be known about either the mechanisms of development or causality. In the 1970s, a model of DD formulated the concept that diverticula occur as a consequence of pressureinduced damage to the colon wall amongst those with a low intake of dietary fiber. In this review, we have examined the evidence regarding the influence of ageing, diet, inflammation and genetics on DD development. We argue that the evidence supporting the barotrauma hypothesis is largely anecdotal. We have also identified several gaps in the knowledge base which need to be filled before we can complete
Resumo:
Genetic analysis of heat tolerance will help breeders produce rice (Oryza sativa L.) varieties adapted to future climates. An F6 population of 181 recombinant inbred lines of Bala (tolerant) × Azucena (susceptible) was screened for heat tolerance at anthesis by measuring spikelet fertility at 30°C (control) and 38°C (high temperature) in experiments conducted in the Philippines and the United Kingdom. The parents varied significantly for absolute spikelet fertility under control (79–87%) and at high temperature (2.9–47.1%), and for relative spikelet fertility (high temperature/control) at high temperature (3.7–54.9%). There was no correlation between spikelet fertility in control and high-temperature conditions and no common quantitative trait loci (QTLs) were identified. Two QTLs for spikelet fertility under control conditions were identified on chromosomes 2 and 4. Eight QTLs for spikelet fertility under high-temperature conditions were identified on chromosomes 1, 2, 3, 8, 10, and 11. The most significant heat-responsive QTL, contributed by Bala and explaining up to 18% of the phenotypic variation, was identified on chromosome 1 (38.35 mega base pairs on the rice physical genome map). This QTL was also found to influence plant height, explaining 36.6% of the phenotypic variation. A comparison with other studies of abiotic (drought, cold, salinity) stresses showed QTLs at similar positions on chromosomes 1, 3, 8, and 10, suggesting common underlying stress-responsive regions of the genome.
Resumo:
We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.