2 resultados para general topology

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transreal numbers are a total number system in which even, arithmetical operation is well defined even-where. This has many benefits over the real numbers as a basis for computation and, possibly, for physical theories. We define the topology of the transreal numbers and show that it gives a more coherent interpretation of two's complement arithmetic than the conventional integer model. Trans-two's-complement arithmetic handles the infinities and 0/0 more coherently, and with very much less circuitry, than floating-point arithmetic. This reduction in circuitry is especially beneficial in parallel computers, such as the Perspex machine, and the increase in functionality makes Digital Signal Processing chips better suited to general computation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to the Hamiltonian functional itself, non-canonical Hamiltonian dynamical systems generally possess integral invariants known as ‘Casimir functionals’. In the case of the Euler equations for a perfect fluid, the Casimir functionals correspond to the vortex topology, whose invariance derives from the particle-relabelling symmetry of the underlying Lagrangian equations of motion. In a recent paper, Vallis, Carnevale & Young (1989) have presented algorithms for finding steady states of the Euler equations that represent extrema of energy subject to given vortex topology, and are therefore stable. The purpose of this note is to point out a very general method for modifying any Hamiltonian dynamical system into an algorithm that is analogous to those of Vallis etal. in that it will systematically increase or decrease the energy of the system while preserving all of the Casimir invariants. By incorporating momentum into the extremization procedure, the algorithm is able to find steadily-translating as well as steady stable states. The method is applied to a variety of perfect-fluid systems, including Euler flow as well as compressible and incompressible stratified flow.