131 resultados para gap bilinear diffie hellman problem
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.
Resumo:
1. Comparative analyses are used to address the key question of what makes a species more prone to extinction by exploring the links between vulnerability and intrinsic species’ traits and/or extrinsic factors. This approach requires comprehensive species data but information is rarely available for all species of interest. As a result comparative analyses often rely on subsets of relatively few species that are assumed to be representative samples of the overall studied group. 2. Our study challenges this assumption and quantifies the taxonomic, spatial, and data type biases associated with the quantity of data available for 5415 mammalian species using the freely available life-history database PanTHERIA. 3. Moreover, we explore how existing biases influence results of comparative analyses of extinction risk by using subsets of data that attempt to correct for detected biases. In particular, we focus on links between four species’ traits commonly linked to vulnerability (distribution range area, adult body mass, population density and gestation length) and conduct univariate and multivariate analyses to understand how biases affect model predictions. 4. Our results show important biases in data availability with c.22% of mammals completely lacking data. Missing data, which appear to be not missing at random, occur frequently in all traits (14–99% of cases missing). Data availability is explained by intrinsic traits, with larger mammals occupying bigger range areas being the best studied. Importantly, we find that existing biases affect the results of comparative analyses by overestimating the risk of extinction and changing which traits are identified as important predictors. 5. Our results raise concerns over our ability to draw general conclusions regarding what makes a species more prone to extinction. Missing data represent a prevalent problem in comparative analyses, and unfortunately, because data are not missing at random, conventional approaches to fill data gaps, are not valid or present important challenges. These results show the importance of making appropriate inferences from comparative analyses by focusing on the subset of species for which data are available. Ultimately, addressing the data bias problem requires greater investment in data collection and dissemination, as well as the development of methodological approaches to effectively correct existing biases.
Resumo:
Competency management is a very important part of a well-functioning organisation. Unfortunately competency descriptions are not uniformly specified nor defined across borders: National, sectorial or organisational, leading to an opaque competency description market with a multitude of competency frameworks and competency benchmarks. An ontology is a formalised description of a domain, which enables automated reasoning engines to be built which by utilising the interrelations between entities can make “intelligent” choices in different situations within the domain. Introducing formalised competency ontologies automated tools, such as skill gap analysis, training suggestion generation, job search and recruitment, can be developed, which compare and contrast different competency descriptions on the semantic level. The major problem with defining a common formalised ontology for competencies is that there are so many viewpoints of competencies and competency frameworks. Work within the TRACE project has focused on finding common trends within different competency frameworks in order to allow an intermediate competency description to be made, which other frameworks can reference. This research has shown that competencies can be divided up into “knowledge”, “skills” and what we call “others”. An ontology has been created based on this with a simple structure of different “kinds” of “knowledges” and “skills” using semantic interrelations to define the basic semantic structure of the ontology. A prototype tool for analysing a skill gap analysis has been developed. Personal profiles can be produced using the tool and a skill gap analysis is performed on a desired competency profile by using an ontologically based inference engine, which is able to list closest fit and possible proficiency gaps
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s
Resumo:
Problem structuring methods or PSMs are widely applied across a range of variable but generally small-scale organizational contexts. However, it has been argued that they are seen and experienced less often in areas of wide ranging and highly complex human activity-specifically those relating to sustainability, environment, democracy and conflict (or SEDC). In an attempt to plan, track and influence human activity in SEDC contexts, the authors in this paper make the theoretical case for a PSM, derived from various existing approaches. They show how it could make a contribution in a specific practical context-within sustainable coastal development projects around the Mediterranean which have utilized systemic and prospective sustainability analysis or, as it is now known, Imagine. The latter is itself a PSM but one which is 'bounded' within the limits of the project to help deliver the required 'deliverables' set out in the project blueprint. The authors argue that sustainable development projects would benefit from a deconstruction of process by those engaged in the project and suggest one approach that could be taken-a breakout from a project-bounded PSM to an analysis that embraces the project itself. The paper begins with an introduction to the sustainable development context and literature and then goes on to illustrate the issues by grounding the debate within a set of projects facilitated by Blue Plan for Mediterranean coastal zones. The paper goes on to show how the analytical framework could be applied and what insights might be generated.
Resumo:
Indicators are commonly recommended as tools for assessing the attainment of development, and the current vogue is for aggregating a number of indicators together into a single index. It is claimed that such indices of development help facilitate maximum impact in policy terms by appealing to those who may not necessarily have technical expertise in data collection, analysis and interpretation. In order to help counter criticisms of over-simplification, those advocating such indices also suggest that the raw data be provided so as to allow disaggregation into component parts and hence facilitate a more subtle interpretation if a reader so desires. This paper examines the problems involved with interpreting indices of development by focusing on the United Nations Development Programmes (UNDP) Human Development Index (HDI) published each year in the Human Development Reports (HDRs). The HDI was intended to provide an alternative to the more economic based indices, such as GDP, commonly used within neo-liberal development agendas. The paper explores the use of the HDI as a gauge of human development by making comparisons between two major political and economic communities in Africa (ECOWAS and SADC). While the HDI did help highlight important changes in human development as expressed by the HDI over 10 years, it is concluded that the HDI and its components are difficult to interpret as methodologies have changed significantly and the 'averaging' nature of the HDI could hide information unless care is taken. The paper discusses the applicability of alternative models to the HDI such as the more neo-populist centred methods commonly advocated for indicators of sustainable development. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Pressing global environmental problems highlight the need to develop tools to measure progress towards "sustainability." However, some argue that any such attempt inevitably reflects the views of those creating such tools and only produce highly contested notions of "reality." To explore this tension, we critically assesses the Environmental Sustainability Index (ESI), a well-publicized product of the World Economic Forum that is designed to measure 'sustainability' by ranking nations on league tables based on extensive databases of environmental indicators. By recreating this index, and then using statistical tools (principal components analysis) to test relations between various components of the index, we challenge ways in which countries are ranked in the ESI. Based on this analysis, we suggest (1) that the approach taken to aggregate, interpret and present the ESI creates a misleading impression that Western countries are more sustainable than the developing world; (2) that unaccounted methodological biases allowed the authors of the ESI to over-generalize the relative 'sustainability' of different countries; and, (3) that this has resulted in simplistic conclusions on the relation between economic growth and environmental sustainability. This criticism should not be interpreted as a call for the abandonment of efforts to create standardized comparable data. Instead, this paper proposes that indicator selection and data collection should draw on a range of voices, including local stakeholders as well as international experts. We also propose that aggregating data into final league ranking tables is too prone to error and creates the illusion of absolute and categorical interpretations. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The “butterfly effect” is a popularly known paradigm; commonly it is said that when a butterfly flaps its wings in Brazil, it may cause a tornado in Texas. This essentially describes how weather forecasts can be extremely senstive to small changes in the given atmospheric data, or initial conditions, used in computer model simulations. In 1961 Edward Lorenz found, when running a weather model, that small changes in the initial conditions given to the model can, over time, lead to entriely different forecasts (Lorenz, 1963). This discovery highlights one of the major challenges in modern weather forecasting; that is to provide the computer model with the most accurately specified initial conditions possible. A process known as data assimilation seeks to minimize the errors in the given initial conditions and was, in 1911, described by Bjerkness as “the ultimate problem in meteorology” (Bjerkness, 1911).