20 resultados para frameshift mutation

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli possesses iron transporters specific for either Fe2+ or Fe3+. Although Fe2+ is far more soluble than Fe3+, it rapidly oxidizes aerobically at pH >= 7. Thus, FeoAB, the major Fe2+ transporter of E. coli, operates anaerobically. However, Fe2+ remains stable aerobically under acidic conditions, although a low-pH Fe2+ importer has not been previously identified. Here we show that ycdNOB (efeUOB) specifies the first such transporter. efeUOB is repressed at high pH by CpxAR, and is Fe2+-Fur repressed. EfeU is homologous to the high-affinity iron permease, Ftr1p, of Saccharomyces cerevisiae and other fungi. EfeO is periplasmic with a cupredoxin N-terminal domain; EfeB is also periplasmic and is haem peroxidase-like. All three Efe proteins are required for Efe function. The efeU gene of E. coli K-12 is cryptic due to a frameshift mutation - repair of the single-base-pair deletion generates a functional EfeUOB system. In contrast, the efeUOB operon of the enterohaemorrhagic strain, O157:1147, lacks any frameshift and is functional. A 'wild-type' K-12 strain bearing a functional EfeUOB displays a major growth advantage under aerobic, low-pH, low-iron conditions when a competing metal is provided. Fe-55 transport assays confirm the ferrous iron specificity of EfeUOB.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::str(r) null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::str(r). Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an application of birth-and-death processes on configuration spaces to a generalized mutation4 selection balance model. The model describes the aging of population as a process of accumulation of mu5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces. 6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which 7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states 8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest 9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic 10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence of epistatic potentials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varroa destructor is a parasitic mite of the Eastern honeybee Apis cerana. Fifty years ago, two distinct evolutionary lineages (Korean and Japanese) invaded the Western honeybee Apis mellifera. This haplo-diploid parasite species reproduces mainly through brother sister matings, a system which largely favors the fixation of new mutations. In a worldwide sample of 225 individuals from 21 locations collected on Western honeybees and analyzed at 19 microsatellite loci, a series of de novo mutations was observed. Using historical data concerning the invasion, this original biological system has been exploited to compare three mutation models with allele size constraints for microsatellite markers: stepwise (SMM) and generalized (GSM) mutation models, and a model with mutation rate increasing exponentially with microsatellite length (ESM). Posterior probabilities of the three models have been estimated for each locus individually using reversible jump Markov Chain Monte Carlo. The relative support of each model varies widely among loci, but the GSM is the only model that always receives at least 9% support, whatever the locus. The analysis also provides robust estimates of mutation parameters for each locus and of the divergence time of the two invasive lineages (67,000 generations with a 90% credibility interval of 35,000-174,000). With an average of 10 generations per year, this divergence time fits with the last post-glacial Korea Japan land separation. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, a genomic analysis of full VP1 sequence region of 15 clinical re-isolates (14 healthy vaccinees and one bone marrow tumor patient) was conducted, aiming to the identification of mutations and to the assessment of their impact on virus fitness, providing also insights relevant with the natural evolution of Sabin strains. Clinical re-isolates were analyzed by RT-PCR, sequencing and computational analysis. Some re-isolates were characterized by an unusual mutational pattern in which non-synonymous mutations outnumbered the synonymous ones. Furthermore, the majority of amino-acid substitutions were located in the capsid exterior, specifically in N-Ags, near N-Ags and in the north rim of the canyon. Also mutations, which are well-known determinants of attenuation, were identified. The results of this study propose that some re-isolates are characterized by an evolutionary pattern in which non-synonymous mutations with a direct phenotypic impact on viral fitness are fixed in viral genomes, in spite of synonymous ones with no phenotypic impact on viral fitness. Results of the present retrospective characterization of Sabin clinical re-isolates, based on the full VP1 sequence, suggest that vaccine-derived viruses may make their way through narrow breaches and may evolve into transmissible pathogens even in adequately immunized populations. For this reason increased poliovirus laboratory surveillance should be permanent and full VP1 sequence analysis should be conducted even in isolates originating from healthy vaccinees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About 5.5% of all UK hemophilia B patients have the base substitution IVS 5+13 A-->G as the only change in their factor (F)IX gene (F9). This generates a novel donor splice site which fits the consensus better than the normal intron 5 donor splice. Use of the novel splice site should result in a missense mutation followed by the abnormal addition of four amino acids to the patients' FIX. In order to explain the prevalence of this mutation, its genealogical history is examined. Analysis of restriction fragment length polymorphism in the 21 reference UK individuals (from different families) with the above mutation showed identical haplotypes in 19 while two differed from the rest and from each other. In order to investigate the history of the mutation and to verify that it had occurred independently more than once, the sequence variation in 1.5-kb segments scattered over a 13-Mb region including F9 was examined in 18 patients and 15 controls. This variation was then analyzed with a recently developed Bayesian approach that reconstructs the genealogy of the gene investigated while providing evidence of independent mutations that contribute disconnected branches to the genealogical tree. The method also provides minimum estimates of the age of the mutation inherited by the members of coherent trees. This revealed that 17 or 18 mutant genes descend from a founder who probably lived 450 years ago, while one patient carries an independent mutation. The independent recurrence of the IVS5+13 A-->G mutation strongly supports the conclusion that it is the cause of these patients' mild hemophilia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsatellites are widely used in genetic analyses, many of which require reliable estimates of microsatellite mutation rates, yet the factors determining mutation rates are uncertain. The most straightforward and conclusive method by which to study mutation is direct observation of allele transmissions in parent-child pairs, and studies of this type suggest a positive, possibly exponential, relationship between mutation rate and allele size, together with a bias toward length increase. Except for microsatellites on the Y chromosome, however, previous analyses have not made full use of available data and may have introduced bias: mutations have been identified only where child genotypes could not be generated by transmission from parents' genotypes, so that the probability that a mutation is detected depends on the distribution of allele lengths and varies with allele length. We introduce a likelihood-based approach that has two key advantages over existing methods. First, we can make formal comparisons between competing models of microsatellite evolution; second, we obtain asymptotically unbiased and efficient parameter estimates. Application to data composed of 118,866 parent-offspring transmissions of AC microsatellites supports the hypothesis that mutation rate increases exponentially with microsatellite length, with a suggestion that contractions become more likely than expansions as length increases. This would lead to a stationary distribution for allele length maintained by mutational balance. There is no evidence that contractions and expansions differ in their step size distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Inherited GH insensitivity (GHI) is usually caused by mutations in the GH receptor (GHR). Patients present with short stature associated with high GH and low IGF-I levels and may have midfacial hypoplasia ( typical Laron syndrome facial features). We previously described four mildly affected GHI patients with an intronic mutation in the GHR gene (A.(1) -> G.(1) substitution in intron 6), resulting in the activation of a pseudoexon (6 Psi) and inclusion of 36 amino acids. Objective: The study aimed to analyze the clinical and genetic characteristics of additional GHI patients with the pseudoexon (6 Psi) mutation. Design/Patients: Auxological, biochemical, genetic, and haplotype data from seven patients with severe short stature and biochemical evidence of GHI were assessed. Main Outcome Measures: We assessed genotype-phenotype relationship. Results: One patient belongs to the same extended family, previously reported. She has normal facial features, and her IGF-I levels are in the low-normal range for age. The six unrelated patients, four of whom have typical Laron syndrome facial features, have heights ranging from -3.3 to -6.0 SD and IGF-I levels that vary from normal to undetectable. We hypothesize that the marked difference in biochemical and clinical phenotypes might be caused by variations in the splicing efficiency of the pseudoexon. Conclusions: Activation of the pseudoexon in the GHR gene can lead to a variety of GHI phenotypes. Therefore, screening for the presence of this mutation should be performed in all GHI patients without mutations in the coding exons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) mutations are an important cause of genetic disease and have been proposed to play a role in the ageing process. Quantification of total mtDNA mutation load in ageing tissues is difficult as mutational events are rare in a background of wild-type molecules, and detection of individual mutated molecules is beyond the sensitivity of most sequencing based techniques. The methods currently most commonly used to document the incidence of mtDNA point mutations in ageing include post-PCR cloning, single-molecule PCR and the random mutation capture assay. The mtDNA mutation load obtained by these different techniques varies by orders of magnitude, but direct comparison of the three techniques on the same ageing human tissue has not been performed. We assess the procedures and practicalities involved in each of these three assays and discuss the results obtained by investigation of mutation loads in colonic mucosal biopsies from ten human subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice and Arabidopsis while less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca L. (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, the SEASONAL FLOWERING LOCUS which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent LD suppression of flowering, and the early flowering that then occurs under LD is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca, and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life-history traits vary substantially across species, and have been demonstrated to affect substitution rates. We compute genomewide, branch-specific estimates of male mutation bias (the ratio of male-to-female mutation rates) across 32 mammalian genomes and study how these vary with life-history traits (generation time, metabolic rate, and sperm competition). We also investigate the influence of life-history traits on substitution rates at unconstrained sites across a wide phylogenetic range. We observe that increased generation time is the strongest predictor of variation in both substitution rates (for which it is a negative predictor) and male mutation bias (for which it is a positive predictor). Although less significant, we also observe that estimates of metabolic rate, reflecting replication-independent DNA damage and repair mechanisms, correlate negatively with autosomal substitution rates, and positively with male mutation bias. Finally, in contrast to expectations, we find no significant correlation between sperm competition and either autosomal substitution rates or male mutation bias. Our results support the important but frequently opposite effects of some, but not all, life history traits on substitution rates. KEY WORDS: Generation time, genome evolution, metabolic rate, sperm competition.