16 resultados para fractured aquifers
em CentAUR: Central Archive University of Reading - UK
Resumo:
Cross-hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional-wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale-rich rocks have fabric-related average velocity anisotropy of between 10% and 30%. The cross-hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross-hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid-filled fractures, when using geophysical techniques for hydrological investigations.
Resumo:
A case study of a goat metatarsal exhibiting a complex diaphyseal fracture from Pottery Neolithic Jarmo in the Central Zagros region of the eastern Fertile Crescent is here described and analysed. The Central Zagros is one of the areas with the earliest evidence for goat domestication. The significance of the pathology may be viewed within the context of domestic goat ecology in the landscape of Jarmo, potentially impacting browsing behaviour (goats raise themselves on their hind limbs to browse) and movement with the herd in the landscape (the terrain around Jarmo is very steep in places, which would be difficult for an animal to navigate on three legs). In the light of this, possible levels of care that the Neolithic human community may have afforded this animal are discussed – from a situation where therapeutic intervention may have occurred, to one of stall confinement of the animal to allow the pathology to heal, to a position of simple awareness of the condition – and how this impacts on our understanding of changes in attitudes towards animals through the process of domestication.
Resumo:
At the Paris Peace Conferences of 1918-1919, new states aspiring to be nation-states were created for 60 million people, but at the same time 25 million people found themselves as ethnic minorities. This change of the old order in Europe had a considerable impact on one such group, more than 3 million Bohemian German-speakers, later referred to as Sudeten Germans. After the demise of the Habsburg Empire In 1918, they became part of the new state of Czechoslovakia. In 1938, the Munich Agreement – prelude to the Second World War – integrated them into Hitler’s Reich; in 1945-1946 they were expelled from the reconstituted state of Czechoslovakia. At the centre of this War Child case study are German children from the Northern Bohemian town and district, formerly known as Gablonz an der Neisse, famous for exquisite glass art, now Jablonec nad Nisou in the Czech Republic. After their expulsion they found new homes in the post-war Federal Republic of Germany. In addition, testimonies have been drawn upon of some Czech eyewitnesses from the same area, who provided their perspective from the other side, as it were. It turned out to be an insightful case study of the fate of these communities, previously studied mainly within the context of the national struggle between Germans and Czechs. The inter-disciplinary research methodology adopted here combines history and sociological research to demonstrate the effect of larger political and social developments on human lives, not shying away from addressing sensitive political and historical issues, as far as these are relevant within the context of the study. The expellees started new lives in what became Neugablonz in post-war Bavaria where they successfully re-established the industries they had had to leave behind in 1945-1946. Part 1 of the study sheds light on the complex Czech-German relationship of this important Central European region, addressing issues of democracy, ethnicity, race, nationalism, geopolitics, economics, human geography and ethnography. It also charts the developments leading to the expulsion of the Sudeten Germans from Czechoslovakia after 1945. What is important in this War Child study is how the expellees remember their history while living as children in Sudetenland and later. The testimony data gained indicate that certain stereotypes often repeated within the context of Sudeten issues such as the confrontational nature of inter-ethnic relations are not reflected in the testimonies of the respondents from Gablonz. In Part 2 the War Child Study explores the memories of the former Sudeten war children using sociological research methods. It focuses on how they remember life in their Bohemian homeland and coped with the life-long effects of displacement after their expulsion. The study maps how they turned adversity into success by showing a remarkable degree of resilience and ingenuity in the face of testing circumstances due to the abrupt break in their lives. The thesis examines the reasons for the relatively positive outcome to respondents’ lives and what transferable lessons can be deduced from the results of this study.
Resumo:
An elastomeric, supramolecular healable polymer blend, comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl endgroups, is compatibilised by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This inter-polymer interaction is key to forming a tough, healable, elastomeric material. Variable temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π–π stacking interactions. Variable temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology, and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
The discovery of polymers with stimuli responsive physical properties is a rapidly expanding area of research. At the forefront of the field are self-healing polymers, which, when fractured can regain the mechanical properties of the material either autonomically, or in response to a stimulus. It has long been known that it is possible to promote healing in conventional thermoplastics by heating the fracture zone above the Tg of the polymer under pressure. This process requires reptation and subsequent re-entanglement of macromolecules across the fracture void, which serves to bridge, and ‘heal’ the crack. The timescale for this mechanism is highly dependent on the molecular weight of the polymer being studied. This process is in contrast to that required to affect healing in supramolecular polymers such as the plasticised, hydrogen bonded elastomer reported by Leibler et al. The disparity in bond energies between the non-covalent and covalent bonds within supramolecular polymers results in fractures propagating through scission of the comparatively weak supramolecular interactions, rather than through breaking the stronger, covalent bonds. Thus, during the healing process the macromolecules surrounding the fracture site only need sufficient energy to re-engage their supramolecular interactions in order to regenerate the strength of the pristine material. Herein we describe the design, synthesis and optimization of a new class of supramolecular polymer blends that harness the reversible nature of pi-pi stacking and hydrogen bonding interactions to produce self-supporting films with facile healable characteristics.
Resumo:
An elastomeric, healable, supramolecular polymer blend comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl end groups is compatibilized by aromatic pi-pi stacking between the pi-electron-deficient diimide groups and the pi-electron-rich pyrenyl units. This interpolymer interaction is the key to forming a tough, healable, elastomeric material. Variable-temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the pi-pi stacking interactions. Variable-temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.
Resumo:
The possible relationship between nutritional status and clinical outcome following orthopaedic hip surgery was investigated. The nutritional status of 60 elderly female patients admitted for elective total hip replacement (THR) and emergency fractured neck of femur surgery (FNF) was measured over time. Specific measures of clinical outcome, including well-being and functional status, were monitored during hospital stay and at 4, 8 and 26 weeks following discharge. Patients were allocated to a high nutritional risk group where any three of the following were less than the 5th percentile value: serum albumin, haemoglobin, triceps skinfold thickness, mid-upper arm muscle circumference and body weight. Using this definition, malnutrition was present in 4% of THR patients and 41% of FNF patients. It was found that the high risk patients had significantly longer convalescence periods, (median stay27.5 days compared with 0 days, P < 0.0009), and a greater proportion were dependent upon walking frames at 6 months (46% compared with 11%, P < 0.01). Fifty percent of the high risk patients had been living independently prior to admission, in contrast only 29% had returned to their homes at 6 months after discharge. The results indicate an apparent link between clinical outcome and nutritional status based upon the allocation procedure employed, which has the potential for ensuring cost-effective nutritional intervention.
Resumo:
Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.
Resumo:
Using a literature review, we argue that new models of peatland development are needed. Many existing models do not account for potentially important ecohydrological feedbacks, and/or ignore spatial structure and heterogeneity. Existing models, including those that simulate a near total loss of the northern peatland carbon store under a warming climate, may produce misleading results because they rely upon oversimplified representations of ecological and hydrological processes. In this, the first of a pair of papers, we present the conceptual framework for a model of peatland development, DigiBog, which considers peatlands as complex adaptive systems. DigiBog accounts for the interactions between the processes which govern litter production and peat decay, peat soil hydraulic properties, and peatland water-table behaviour, in a novel and genuinely ecohydrological manner. DigiBog consists of a number of interacting submodels, each representing a different aspect of peatland ecohydrology. Here we present in detail the mathematical and computational basis, as well as the implementation and testing, of the hydrological submodel. Remaining submodels are described and analysed in the accompanying paper. Tests of the hydrological submodel against analytical solutions for simple aquifers were highly successful: the greatest deviation between DigiBog and the analytical solutions was 2·83%. We also applied the hydrological submodel to irregularly shaped aquifers with heterogeneous hydraulic properties—situations for which no analytical solutions exist—and found the model's outputs to be plausible.
Resumo:
This paper reports the results of fieldwork conducted in the 2010 and 2011 DMP field seasons and of analysis of samples collected during these and previous years. Research has involved 1) studying palaeolake sediment outcrops, 2) using ground penetrating radar (GPR) to determine their extent under the Dahān Ubārī, and 3) coring palaeolakes in order to determine their palaeoenvironmental records. Research on these samples is continuing but some initial findings are discussed in this paper. The most extensive palaeolake sediments are found within the al-Mahruqah Formation and were deposited by a giant lake system that developed in the Fazzān Basin during past humid periods. Stratigraphic analysis of Lake Megafazzān sediments suggests two different sedimentary successions, a lake margin succession distinctive for its lacustrine and palaeosol carbonates, and a clastic-dominated, intensely rootleted, basin-centre succession which has terrestrial intervals (aeolian and palaeosols) as well as in the upper parts lacustrine limestones. Both basin margin and basin centre successions are underlain by fluvial deposits. Magnetostratigraphy suggests that the formation may be as old as the mid-Pliocene. After the Lake Megafazzān phase, smaller palaeolakes developed within the basin during subsequent humid periods. One of the largest is found in the Wādī al-Hayāt in the area between Jarma and Ubārī. Similar deposits further west along the Wādī at progressively higher altitudes are interpreted as small lakes and marshes fed by springs issuing from aquifers at the base of the escarpment, last replenished during the Holocene humid phase. Dating of sediments suggests that this was between c. 11 and c. 8 ka. The Wādī ash-Shāţī palaeolake core also provides a Holocene palaeoclimate record that paints a slightly different picture, indicating lake conditions until around 7 ka, whereupon it started oscillating until around 5.5 ka when sedimentation terminates. The reasons for the differences in these records are discussed.
Resumo:
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.