21 resultados para forest ecosystems
em CentAUR: Central Archive University of Reading - UK
Resumo:
Vertical divergence of CO2 fluxes is observed over two Midwestern AmeriFlux forest sites. The differences in ensemble averaged hourly CO2 fluxes measured at two heights above canopy are relatively small (0.2–0.5 μmol m−2 s−1), but they are the major contributors to differences (76–256 g C m−2 or 41.8–50.6%) in estimated annual net ecosystem exchange (NEE) in 2001. A friction velocity criterion is used in these estimates but mean flow advection is not accounted for. This study examines the effects of coordinate rotation, averaging time period, sampling frequency and co-spectral correction on CO2 fluxes measured at a single height, and on vertical flux differences measured between two heights. Both the offset in measured vertical velocity and the downflow/upflow caused by supporting tower structures in upwind directions lead to systematic over- or under-estimates of fluxes measured at a single height. An offset of 1 cm s−1 and an upflow/downflow of 1° lead to 1% and 5.6% differences in momentum fluxes and nighttime sensible heat and CO2 fluxes, respectively, but only 0.5% and 2.8% differences in daytime sensible heat and CO2 fluxes. The sign and magnitude of both offset and upflow/downflow angle vary between sonic anemometers at two measurement heights. This introduces a systematic and large bias in vertical flux differences if these effects are not corrected in the coordinate rotation. A 1 h averaging time period is shown to be appropriate for the two sites. In the daytime, the absolute magnitudes of co-spectra decrease with height in the natural frequencies of 0.02–0.1 Hz but increase in the lower frequencies (<0.01 Hz). Thus, air motions in these two frequency ranges counteract each other in determining vertical flux differences, whose magnitude and sign vary with averaging time period. At night, co-spectral densities of CO2 are more positive at the higher levels of both sites in the frequency range of 0.03–0.4 Hz and this vertical increase is also shown at most frequencies lower than 0.03 Hz. Differences in co-spectral corrections at the two heights lead to a positive shift in vertical CO2 flux differences throughout the day at both sites. At night, the vertical CO2 flux differences between two measurement heights are 20–30% and 40–60% of co-spectral corrected CO2 fluxes measured at the lower levels of the two sites, respectively. Vertical differences of CO2 flux are relatively small in the daytime. Vertical differences in estimated mean vertical advection of CO2 between the two measurement heights generally do not improve the closure of the 1D (vertical) CO2 budget in the air layer between the two measurement heights. This may imply the significance of horizontal advection. However, a reliable assessment of mean advection contributions in annual NEE estimate at these two AmeriFlux sites is currently an unsolved problem.
Resumo:
Forest soils account for a large part of the stable carbon pool held in terrestrial ecosystems. Future levels of atmospheric CO2 are likely to increase C input into the soils through increased above- and below-ground production of forests. This increased input will result in greater sequestration of C only if the additional C enters stable pools. In this review, we compare current observations from four large-scale Free Air FACE Enrichment (FACE) experiments on forest ecosystems (EuroFACE, Aspen-FACE, Duke FACE and ORNL-FACE) and consider their predictive power for long-term C sequestration. At all sites, FACE increased fine root biomass, and in most cases higher fine root turnover resulted in higher C input into soil via root necromass. However, at all sites, soil CO2 efflux also increased in excess of the increased root necromass inputs. A mass balance calculation suggests that a large part of the stimulation of soil CO2 efflux may be due to increased root respiration. Given the duration of these experiments compared with the life cycle of a forest and the complexity of processes involved, it is not yet possible to predict whether elevated CO2 will result in increased C storage in forest soil.
Resumo:
Concern that European forest biodiversity is depleted and declining has provoked widespread efforts to improve management practices. To gauge the success of these actions, appropriate monitoring of forest ecosystems is paramount. Multi-species indicators are frequently used to assess the state of biodiversity and its response to implemented management, but generally applicable and objective methodologies for species' selection are lacking. Here we use a niche-based approach, underpinned by coarse quantification of species' resource use, to objectively select species for inclusion in a pan-European forest bird indicator. We identify both the minimum number of species required to deliver full resource coverage and the most sensitive species' combination, and explore the trade-off between two key characteristics, sensitivity and redundancy, associated with indicators comprising different numbers of species. We compare our indicator to an existing forest bird indicator selected on the basis of expert opinion and show it is more representative of the wider community. We also present alternative indicators for regional and forest type specific monitoring and show that species' choice can have a significant impact on the indicator and consequent projections about the state of the biodiversity it represents. Furthermore, by comparing indicator sets drawn from currently monitored species and the full forest bird community, we identify gaps in the coverage of the current monitoring scheme. We believe that adopting this niche-based framework for species' selection supports the objective development of multi-species indicators and that it has good potential to be extended to a range of habitats and taxa.
Resumo:
Current forest Free Air CO2 Enrichment (FACE) experiments are reaching completion. Therefore, it is time to define the scientific goals and priorities of future experimental facilities. In this opinion article, we discuss the following three overarching issues (i) What are the most urgent scientific questions and how can they be addressed? (ii) What forest ecosystems should be investigated? (iii) Which other climate change factors should be coupled with elevated CO2 concentrations in future experiments to better predict the effects of climate change? Plantations and natural forests can have conflicting purposes for high productivity and environmental protection. However, in both cases the assessment of carbon balance and how this will be affected by elevated CO2 concentrations and the interacting climate change factors is the most pressing priority for future experiments.
Resumo:
The consequences of increasing atmospheric carbon dioxide for long-term adaptation of forest ecosystems remain uncertain, with virtually no studies undertaken at the genetic level. A global analysis using cDNA microarrays was conducted following 6 yr exposure of Populus × euramericana (clone I-214) to elevated [CO2] in a FACE (free-air CO2 enrichment) experiment.• Gene expression was sensitive to elevated [CO2] but the response depended on the developmental age of the leaves, and < 50 transcripts differed significantly between different CO2 environments. For young leaves most differentially expressed genes were upregulated in elevated [CO2], while in semimature leaves most were downregulated in elevated [CO2].• For transcripts related only to the small subunit of Rubisco, upregulation in LPI 3 and downregulation in LPI 6 leaves in elevated CO2 was confirmed by anova. Similar patterns of gene expression for young leaves were also confirmed independently across year 3 and year 6 microarray data, and using real-time RT–PCR.• This study provides the first clues to the long-term genetic expression changes that may occur during long-term plant response to elevated CO2.
Resumo:
As a consequence of land use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2. However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass, and morphology responded differentially to elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterised with data from species grown in monoculture may be underestimating the belowground response to global change.
Resumo:
Forensic archaeologists and criminal investigators employ many different techniques for the location, recovery, and analysis of clandestine graves. Many of these techniques are based upon the premise that a grave is an anomaly and therefore differs physically, biologically, or chemically from its surroundings. The work reviewed in this communication demonstrates how and why field mycology might provide a further tool towards the investigation of scenes of crime concealed in forest ecosystems. The fruiting structures of certain fungi, the ammonia and the postputrefaction fungi, have been recorded repeatedly in association with decomposed mammalian cadavers in disparate regions of the world. The ecology and physiology of these fungi are reviewed briefly with a view to their potential as a forensic tool. This application of mycology is at an interface with forensic archaeology and forensic taphonomy and may provide a means to detect graves and has the potential to estimate postburial interval.
Resumo:
Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground ‘tree talk’ is a foundational process in the complex adaptive nature of forest ecosystems.
Resumo:
Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir’s natural distribution encompasses three of the five soils, whereas lodgepole pine’s extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes.
Resumo:
Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.
Resumo:
Edaphic variables figure significantly in plant community adaptations in tropical ecosystems but are often difficult to resolve because of the confounding influence of climate. Within the Chiquibul forest of Belize, large areas of Ultisols and Inceptisols occur juxtaposed within a larger zone of similar climate, permitting unambiguous assessment of edaphic contributions to forest composition. Wet chemical analyses, X-ray diffraction and X-ray fluorescence spectroscopy were employed to derive chemical (pH, exchangeable cations, CEC, total and organic C, total trace elements) and physical (texture, mineralogy) properties of four granite-derived Ustults from the Mountain Pine Ridge plateau and four limestone-derived Ustepts from the San Pastor region. The soils of these two regions support two distinct forests, each possessing a species composition reflecting the many contrasting physicochemical properties of the underlying soil. Within the Mountain Pine Ridge forest, species abundance and diversity is constrained by nutrient deficiencies and water-holding limitations imposed by the coarse textured, highly weathered Ultisols. As a consequence, the forest is highly adapted to seasonal drought, frequent fires and the significant input of atmospherically derived nutrients. The nutrient-rich Inceptisols of the San Pastor region, conversely, support an abundant and diverse evergreen forest, dominated by Sabal mauritiiformis, Cryosophila stauracantha and Manilkara spp. Moreover, the deep, fine textured soils in the depressions of the karstic San Pastor landscape collect and retain during the wet season much available water, thereby serving as refugia during particularly long periods of severe drought. To the extent that the soils of the Chiquibul region promote and maintain forest diversity, they also confer redundancy and resilience to these same forests and, to the broader ecosystem, of which they are a central part. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from 16 climate models and mapping the proportions of model runs showing forest/nonforest shifts or exceedance of natural variability in wildfire frequency and freshwater supply. Our analysis does not assign probabilities to scenarios or weights to models. Instead, we consider distribution of outcomes within three sets of model runs grouped by the amount of global warming they simulate: <2°C (including simulations in which atmospheric composition is held constant, i.e., in which the only climate change is due to greenhouse gases already emitted), 2–3°C, and >3°C. High risk of forest loss is shown for Eurasia, eastern China, Canada, Central America, and Amazonia, with forest extensions into the Arctic and semiarid savannas; more frequent wildfire in Amazonia, the far north, and many semiarid regions; more runoff north of 50°N and in tropical Africa and northwestern South America; and less runoff in West Africa, Central America, southern Europe, and the eastern U.S. Substantially larger areas are affected for global warming >3°C than for <2°C; some features appear only at higher warming levels. A land carbon sink of ≈1 Pg of C per yr is simulated for the late 20th century, but for >3°C this sink converts to a carbon source during the 21st century (implying a positive climate feedback) in 44% of cases. The risks continue increasing over the following 200 years, even with atmospheric composition held constant.
Resumo:
Considered as one of the most available radionuclide in soileplant system, 36Cl is of potential concern for long-term management of radioactive wastes, due to its high mobility and its long half-life. To evaluate the risk of dispersion and accumulation of 36Cl in the biosphere as a consequence of a potential contamination, there is a need for an appropriate understanding of the chlorine cycling dynamics in the ecosystems. To date, a small number of studies have investigated the chlorine transfer in the ecosystem including the transformation of chloride to organic chlorine but, to our knowledge, none have modelled this cycle. In this study, a model involving inorganic as well as organic pools in soils has been developed and parameterised to describe the biogeochemical fate of chlorine in a pine forest. The model has been evaluated for stable chlorine by performing a range of sensitivity analyses and by comparing the simulated to the observed values. Finally a range of contamination scenarios, which differ in terms of external supply, exposure time and source, has been simulated to estimate the possible accumulation of 36Cl within the different compartments of the coniferous stand. The sensitivity study supports the relevancy of the model and its compartments, and has highlighted the chlorine transfers affecting the most the residence time of chlorine in the stand. Compared to observations, the model simulates realistic values for the chlorine content within the different forest compartments. For both atmospheric and underground contamination scenarios most of the chlorine can be found in its organic form in the soil. However, in case of an underground source, about two times less chlorine accumulates in the system and proportionally more chlorine leaves the system through drainage than through volatilisation.
Resumo:
In the lowland agro-forest of the Sierra Madre Biodiversity Corridor (SMBC), it is considered that a native rodent species, Rattus everetti is competitively dominant over an invasive pest species, Rattus tanezumi. The main aim of this study was to assess the response of R. tanezumi following short term removal of R. everetti. We tested this experimentally by trapping and removing R. everetti from two treatment sites in agro-forest habitat on three occasions over three consecutive months. This was followed by three months of non-removal trapping. Two non-treatment sites were trapped for comparison. Following R. everetti removal, R. everetti individuals rapidly immigrated into the treatment sites and a significantly higher proportion of R. tanezumi females were in breeding condition in the treatment sites than in the non-treatment sites. The results from this study provide evidence of competition between native and invasive rodent species in complex agro-ecosystems. We were also able to demonstrate that R. everetti populations are able to recover rapidly from the non-target effects of short-term lethal control in and around agro-forest.
Resumo:
This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change. High latitudes are characterized by large annual changes in solar input. Albedo decreases strongly from winter, when the surface is snow-covered, to summer, especially in nonforested regions such as Arctic tundra and boreal wetlands. Evapotranspiration (QE) of high-latitude ecosystems is less than from a freely evaporating surface and decreases late in the season, when soil moisture declines, indicating stomatal control over QE, particularly in evergreen forests. Evergreen conifer forests have a canopy conductance half that of deciduous forests and consequently lower QE and higher sensible heat flux (QH). There is a broad overlap in energy partitioning between Arctic and boreal ecosystems, although Arctic ecosystems and light taiga generally have higher ground heat flux because there is less leaf and stem area to shade the ground surface, and the thermal gradient from the surface to permafrost is steeper. Permafrost creates a strong heat sink in summer that reduces surface temperature and therefore heat flux to the atmosphere. Loss of permafrost would therefore amplify climatic warming. If warming caused an increase in productivity and leaf area, or fire caused a shift from evergreen to deciduous forest, this would increase QE and reduce QH. Potential future shifts in vegetation would have varying climate feedbacks, with largest effects caused by shifts from boreal conifer to shrubland or deciduous forest (or vice versa) and from Arctic coastal to wet tundra. An increase of logging activity in the boreal forests appears to reduce QE by roughly 50% with little change in QH, while the ground heat flux is strongly enhanced.