12 resultados para forest ecology
em CentAUR: Central Archive University of Reading - UK
Resumo:
Re-establishing nutrient-cycling is often a key goal of mine-site restoration. This goal can be achieved by applying fertilisers (particularly P) in combination with seeding N-fixing legumes. However, the effect of this strategy on other key restoration goals such as the establishment and growth of non-leguminous species has received little attention. We investigated the effects of P-application rates either singly, or in combination with seeding seven large understorey legume species, on jarrah forest restoration after bauxite mining. Five years after P application and seeding, legume species richness, density and cover were higher in the legume-seeded treatment. However, the increased establishment of legumes did not lead to increased soil N. Increasing P-application rates from 0 to 80 kg P ha−1 did not affect legume species richness, but significantly reduced legume density and increased legume cover: cover was maximal (∼50%) where 80 kg P ha−1 had been applied with large legume seeds. Increasing P-application had no effect on species richness of non-legume species, but increased the density of weeds and native ephemerals. Cover of non-legume species decreased with increasing P-application rates and was lower in plots where large legumes had been seeded compared with non-seeded plots. There was a significant legume × P interaction on weed and ephemeral density: at 80 kg P ha−1 the decline in density of these groups was greatest where legumes were seeded. In addition, the decline in cover for non-legume species with increasing P was greatest when legumes were seeded. Applying 20 kg P ha−1 significantly increased tree growth compared with tree growth in unfertilised plots, but growth was not increased further at 80 kg ha−1 and tree growth was not affected by seeding large legumes. Taken together, these data indicate that 80 kg ha−1 P-fertiliser in combination with (seeding) large legumes maximised vegetation cover at five years but could be suboptimal for re-establishing a jarrah forest community that, like unmined forest, contains a diverse community of slow-growing re-sprouter species. The species richness and cover of non-legume understorey species, especially the resprouters, was highest in plots that received either 0 or 20 kg ha−1 P and where large legumes had not been seeded. Therefore, our findings suggest that moderation of P-fertiliser and legumes could be the best strategy to fulfil the multiple restoration goals of establishing vegetation cover, while at the same time maximising tree growth and species richness of restored forest.
Resumo:
Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomassfunctions (BFs) and biomassexpansionfactors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.
Resumo:
An alteration of species composition in temperate forests – both managed and natural - is one of the expected effects of environmental change. Present forest tree species ranges will be altered by changing environmental conditions. By a combination of continuous and destructive sampling, we compared biomass stocks and annual NPP in naturally regenerated stands of Norway spruce and European beech. We purposely selected a site where future environmental conditions are predicted to favour beech over presently dominant spruce. We found no difference in overall productivity, but biomass allocation differed significantly between the two species. Beech allocated more assimilates to stem and roots than spruce. There was no significant difference between the species in NPP of the fast turnover biomass pool comprising foliage and fine roots. Maximum height growth occurred about a month earlier than in spruce, potentially changing the timing of carbon (C) flow into the soil pools. We show that the replacement of spruce by beech will result in changes in forest biomass allocation and in alterations of belowground C cycle. Such changes will affect forest ecosystem function by modifying the magnitude and timing of certain C fluxes, but also by potentially changing the species composition of forest biota dependent on them.
Resumo:
Plant species can condition the physico-chemical and biological properties of soil in ways that modify plant growth via plant–soil feedback (PSF). Plant growth can be positively affected, negatively affected or neutrally affected by soil conditioning by the same or other plant species. Soil conditioning by other plant species has particular relevance to ecological restoration of historic ecosystems because sites set aside for restoration are often conditioned by other, potentially non-native, plant species. We investigated changes in properties of jarrah forest soils after long-term (35 years) conditioning by pines (Pinus radiata), Sydney blue gums (Eucalyptus saligna), both non-native, plantation trees, and jarrah (Eucalyptus marginata; dominant native tree). Then, we tested the influence of the conditioned soils on the growth of jarrah seedlings. Blue gums and pines similarly conditioned the physico-chemical properties of soils, which differed from soil conditioning caused by jarrah. Especially important were the differences in conditioning of the properties C:N ratio, pH, and available K. The two eucalypt species similarly conditioned the biological properties of soil (i.e. community level physiological profile, numbers of fungal-feeding nematodes, omnivorous nematodes, and nematode channel ratio), and these differed from conditioning caused by pines. Species-specific conditioning of soil did not translate into differences in the amounts of biomass produced by jarrah seedlings and a neutral PSF was observed. In summary, we found that decades of soil conditioning by non-native plantation trees did not influence the growth of jarrah seedlings and will therefore not limit restoration of jarrah following the removal of the plantation trees.
Resumo:
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.
Resumo:
Artisanal and small-scale mining (ASM) is an activity intimately associated with social deprivation and environmental degradation, including deforestation. This paper examines ASM and deforestation using a broadly poststructural political ecology framework. Hegemonic discourses are shown to consistently influence policy direction, particularly in emerging approaches such as Corporate Social Responsibility and the Forest Stewardship Council. A review of alternative discourses reveals that the poststructural method is useful for critiquing the international policy arena but does not inform new approaches. Synthesis of the analysis leads to conclusions that echo a growing body of literature advocating for policies to become increasingly sensitive to local contexts, synergistic between actors at difference scales, and to be integrated across sectors.
Resumo:
Leaves of 14 species of Ficus growing in the Budongo Forest, Uganda, were analysed for vacuolar flavonoids. Three to six accessions were studied for each species to see whether there was intraspecific chemical variation. Thirty-nine phenolic compounds were identified or characterised, including 14 flavonol O-glycosides, six flavone O-glycosides and 15 flavone C-glycosides. In some species the flavonoid glycosides were acylated. Ficus thonningii contained in addition four stilbenes including glycosides. Most of the species could be distinguished from each other on the basis of their flavonoid profiles, apart from Ficus sansibarica and Ficus saussureana, which showed a very strong intraspecific variation. However, on the whole flavonoid profiles were sufficiently distinct to help in future identifications.
Resumo:
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.
Resumo:
The scope of the reducing emissions from deforestation and forest degradation (REDD) mechanism has broadened REDD+ to accommodate different country interests such as natural forests, protected areas, as well as forests under community-based management. In Tanzania the REDD+ mechanism is still under development and pilot projects are at an early stage. In this paper, we seek to understand how local priorities and needs could be met in REDD+ implementation and how these expectations match with global mitigation benefits. We examine the local priorities and needs in the use of land and forest resources in the Angai Villages Land Forest Reserve (AVLFR) in the Liwale District of Lindi Region in Tanzania. Primary data was collected in two villages, Mihumo and Lilombe, using semistructured key informant interviews and participatory rural appraisal methods. In addition, the key informant interviews were conducted with other village, district, and national level actors, as well as international donors. Findings show that in the two communities REDD+ is seen as something new and is generating new expectations among communities. However, the Angai villagers highlight three key priorities that have yet to be integrated into the design of REDD+: water scarcity, rural development, and food security. At the local level improved forest governance and sustainable management of forest resources have been identified as one way to achieve livelihood diversification. Although the national goals of REDD+ include poverty reduction, these goals are not necessarily conducive to the goals of these communities. There exist both structural and cultural limits to the ability of the Angai villages to implement these goals and to improve forestry governance. Given the vulnerability to current and future climate variability and change it will be important to consider how the AVLFR will be managed and for whose benefit?
Resumo:
Following the 1998 National Forest Policy and Forest Act of 2002, participatory forest management (PFM) is being introduced in Tanzania. PFM has two key objectives: to reduce forest degradation thereby increasing ecosystem services, and to improve the livelihoods of local villagers. A unique data set collected in 2006 suggests that significant challenges remain with respect to communicating the new forest policies if the objectives of PFM are to be achieved. First, villagers as a group are much less well informed than other stakeholders, and their knowledge is often inaccurate. Second, women are less likely than men to have heard of the changes. Third, how PFM will contribute to poverty reduction (a key objective of PFM) is not always clear. Fourth, environmental degradation may not be reduced as much as anticipated – without alternatives sources, villagers often continue to cut trees for charcoal and firewood in the protected forests. Finally, several mismatches in perceptions are identified that could lead to difficulties in implementing PFM.
Resumo:
Wild pollinators have been shown to enhance the pollination of Brassica napus(oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policymakers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Resumo:
Context. Rattus tanezumi (the Asian house rat) is the principal rodent pest of rice and coconut crops in the Philippines. Little is known about the population and breeding ecology of R. tanezumi in complex agroecosystems; thus, current methods of rodent control may be inappropriate or poorly implemented. Aims. To investigate the habitat use, population dynamics and breeding biology of R. tanezumi in complex lowland agroecosystems of the Sierra Madre Biodiversity Corridor, Luzon, and to develop ecologically based rodent management (EBRM) strategies that will target specific habitats at specific times to improve cost-efficiency and minimise non-target risks. Methods. An 18-month trapping study was conducted in rice monoculture, rice adjacent to coconut, coconut groves, coconut-based agroforest and forest habitats. Trapped animals were measured, marked and assessed for breeding condition. Key results. Five species of rodent were captured across all habitats with R. tanezumi the major pest species in both the rice and coconut crops. The stage of the rice crop was a major factor influencing the habitat use and breeding biology of R. tanezumi. In rice fields, R. tanezumi abundance was highest during the tillering to ripening stages of the rice crop and lowest during the seedling stage, whereas in coconut groves abundance was highest from the seedling to tillering stage of nearby rice crops. Peaks in breeding activity occurred from the booting stage of the rice crop until just after harvest, but >10% of females were in breeding condition at each month of the year. Conclusions. In contrast with the practices applied by rice farmers in the study region, the most effective time for lethal management based on the breeding ecology of R. tanezumi is likely to be during the early stages of the rice crop, before the booting stage. Farmers generally apply control actions as individuals. We recommend coordinated community action. Continuous breeding throughout the year may necessitate two community campaigns per rice cropping season. To limit population growth, the most effective time to reduce nesting habitat is from the booting stage until harvest. Implications. By adopting EBRM strategies, we expect a reduction in costs associated with rodent control, as well as improved yield and reduced risk to non-target species.