9 resultados para focal-plane-array image processors
em CentAUR: Central Archive University of Reading - UK
Resumo:
Infrared filters and coatings have been employed on many sensing radiometer instruments to measure the thermal emission profiles and concentrations of certian chemical constituents found in planetary atmospheres. The High Resolution Dynamics Limb Sounder ( HIRDLS) is an example of the most recent developments in limb-viewing radiometry by employing a cooled focal plane detector array to provide simultaneous multi-channel monitoring of emission from gas and aerosols over an altitude range between 8 - 70 km. The use of spectrally selective cooled detectors in focal plane arrays has simplified the optical layout of radiometers, greatly reducing the number of components in the optical train. this has inevitably led to increased demands for the enviromnetal durability of the focal plane filters because of the need to cut sub-millimeter sizes, whilst maintaining an optimal spectral performance. Additionally the remaining refractive optical elements require antireflection coatings which must cover the entire spectral range of the focal plane array channels, in this case 6 to 18µm, with a minimum of reflection and absorption. This paper describes the optical layout and spectral design requirements for filteriong in the HIRDLS instrument, and reports progress on the manufacturing and testing of the sub-millimetre sized cooled filters. We also report on the spectral and environmental performance of prototype wideband antireflection coatings which satisfy the requirements above.
Resumo:
The High Resolution Dynamics Limb Sounder is described, with particular reference to the atmospheric measurements to be made and the rationale behind the measurement strategy. The demands this strategy places on the filters to be used in the instrument and the designs to which this leads to are described. A second set of filters at an intermediate image plane to reduce "Ghost Imaging" is discussed together with their required spectral properties. A method of combining the spectral characteristics of the primary and secondary filters in each channel are combined together with the spectral response of the detectors and other optical elements to obtain the system spectral response weighted appropriately for the Planck function and atmospheric limb absorption. This method is used to demonstrate whether the out-of-band spectral blocking requirement for a channel is being met and an example calculation is demonstrated showing how the blocking is built up for a representative channel. Finally, the techniques used to produce filters of the necessary sub-millimetre sizes together with the testing methods and procedures used to assess the environmental durability and establish space flight quality are discussed.
Resumo:
Fourier transform infrared (FTIR) spectroscopic imaging using a focal plane array detector has been used to study atherosclerotic arteries with a spatial resolution of 3-4 mum, i.e., at a level that is comparable with cellular dimensions. Such high spatial resolution is made possible using a micro-attenuated total reflection (ATR) germanium objective with a high refractive index and therefore high numerical aperture. This micro-ATR approach has enabled small structures within the vessel wall to be imaged for the first time by FTIR. Structures observed include the elastic lamellae of the tunica media and a heterogeneous distribution of small clusters of cholesterol esters within an atherosclerotic lesion, which may correspond to foam cells. A macro-ATR imaging method was also applied, which involves the use of a diamond macro-ATR accessory. This study of atherosclerosis is presented as an illustrative example of the wider potential of these A TR imaging approaches for cardiovascular medicine and biomedical applications. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Cooled infrared filters have been used in pressure modulation and filter radiometry to measure the dynamics, temperature distribution and concentrations of atmospheric elements in various satellite radiometers. Invariably such instruments use precision infrared bandpass filters and coatings for spectral selction, often operating at cryogenic temperatures. More recent developments in the use of spectrally-selective cooled detectors in focal plane arrays have simplified the optical layout and reduced the component count of radiometers but have placed additional demands on both the spectral and physical performance requirements of the filters. This paper describes and contrasts the more traditional radiometers using discrete detectors with those which use focal plane detector array technology, with particular emphasis on the function of the filters and coatings in the two cases. Additionally we discuss the spectral techniques and materials used to fabricate infrared coatings and filters for use in space optics, and give examples of their application in the fabrication of some demanding long wavelength dichroics and filters. We also discuss the effects of the space environment on the stability and durability of high performance infrared filters and materials exposed to low Earth orbit for 69 months on the NASA Long Duration Exposure Facility (LDEF).
Resumo:
As improvements to the optical design of spectrometer and radiometer instruments evolve with advances in detector sensitivity, use of focal plane detector arrays and innovations in adaptive optics for large high altitude telescopes, interest in mid-infrared astronomy and remote sensing applications have been areas of progressive research in recent years. This research has promoted a number of developments in infrared coating performance, particularly by placing increased demands on the spectral imaging requirements of filters to precisely isolate radiation between discrete wavebands and improve photometric accuracy. The spectral design and construction of multilayer filters to accommodate these developments has subsequently been an area of challenging thin-film research, to achieve high spectral positioning accuracy, environmental durability and aging stability at cryogenic temperatures, whilst maximizing the far-infrared performance. In this paper we examine the design and fabrication of interference filters in instruments that utilize the mid-infrared N-band (6-15 µm) and Q-band (16-28 µm) atmospheric windows, together with a rationale for the selection of materials, deposition process, spectral measurements and assessment of environmental durability performance.
Resumo:
The HIRDLS instrument contains 21 spectral channels spanning a wavelength range from 6 to 18mm. For each of these channels the spectral bandwidth and position are isolated by an interference bandpass filter at 301K placed at an intermediate focal plane of the instrument. A second filter cooled to 65K positioned at the same wavelength but designed with a wider bandwidth is placed directly in front of each cooled detector element to reduce stray radiation from internally reflected in-band signals, and to improve the out-of-band blocking. This paper describes the process of determining the spectral requirements for the two bandpass filters and the antireflection coatings used on the lenses and dewar window of the instrument. This process uses a system throughput performance approach taking the instrument spectral specification as a target. It takes into account the spectral characteristics of the transmissive optical materials, the relative spectral response of the detectors, thermal emission from the instrument, and the predicted atmospheric signal to determine the radiance profile for each channel. Using this design approach an optimal design for the filters can be achieved, minimising the number of layers to improve the in-band transmission and to aid manufacture. The use of this design method also permits the instrument spectral performance to be verified using the measured response from manufactured components. The spectral calculations for an example channel are discussed, together with the spreadsheet calculation method. All the contributions made by the spectrally active components to the resulting instrument channel throughput are identified and presented.
Resumo:
This paper presents an image motion model for airborne three-line-array (TLA) push-broom cameras. Both aircraft velocity and attitude instability are taken into account in modeling image motion. Effects of aircraft pitch, roll, and yaw on image motion are analyzed based on geometric relations in designated coordinate systems. The image motion is mathematically modeled by image motion velocity multiplied by exposure time. Quantitative analysis to image motion velocity is then conducted in simulation experiments. The results have shown that image motion caused by aircraft velocity is space invariant while image motion caused by aircraft attitude instability is more complicated. Pitch,roll and yaw all contribute to image motion to different extents. Pitch dominates the along-track image motion and both roll and yaw greatly contribute to the cross-track image motion. These results provide a valuable base for image motion compensation to ensure high accuracy imagery in aerial photogrammetry.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
The real-time parallel computation of histograms using an array of pipelined cells is proposed and prototyped in this paper with application to consumer imaging products. The array operates in two modes: histogram computation and histogram reading. The proposed parallel computation method does not use any memory blocks. The resulting histogram bins can be stored into an external memory block in a pipelined fashion for subsequent reading or streaming of the results. The array of cells can be tuned to accommodate the required data path width in a VLSI image processing engine as present in many imaging consumer devices. Synthesis of the architectures presented in this paper in FPGA are shown to compute the real-time histogram of images streamed at over 36 megapixels at 30 frames/s by processing in parallel 1, 2 or 4 pixels per clock cycle.