8 resultados para fire use
em CentAUR: Central Archive University of Reading - UK
Resumo:
Fire-centred studies have recently been highlighted as powerful avenues for investigation of energy flows and relations between humans, materials, environments and other species. The aim in this paper is to evaluate this potential first by reviewing the diverse theories and methods that can be applied to investigate the ecological and social significance of anthropogenic fire, and second by applying these to new and existing data sets in archaeology. This paper examines how fire-centred approaches can inform on one of the most significant step-changes in human lifeways and inter-relations with environment and other species – the transition from mobile hunting-gathering to more sedentary agriculture in a key heartland of change, the Zagros region of Iraq and Iran, c. 12,000–8,000 BP. In the review and case studies multiple links are investigated between human fire use and environment, ecology, energy use, technology, the built environment, health, social roles and relations, cultural practices and catastrophic events
Resumo:
The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions.
Resumo:
According to climate change predictions, water availability might change dramatically in Europe and adjacent regions. This change will undoubtedly have an adverse effect on existing tree species and affect their ability to cope with a lack or an excess of water, changes in annual precipitation patterns, soil salinity and fire disturbance. The following chapter will describe tree species and proven-ances used in European forestry practice which are the most suitable to deal with water stress, salinity and fire. Each subchapter starts with a brief description of each of the stress factors and discusses the predictions of the likelihood of their occurrence in the near future according to the climate change scenarios. Tree spe-cies and their genotypes able to cope with particular stress factor, together with indication of their use by forest managers are then introduced in greater detail.
Resumo:
We present an integrated palaeoecological and archaeobotanical study of pre-Columbian raised-field agriculture in the Llanos de Moxos, a vast seasonally inundated forest–savanna mosaic in the Bolivian Amazon. Phytoliths from excavated raised-field soil units, together with pollen and charcoal in sediment cores from two oxbow lakes, were analysed to provide a history of land use and agriculture at the El Cerro raised-field site. The construction of raised fields involved the removal of savanna trees, and gallery forest was cleared from the area by AD 310. Despite the low fertility of Llanos de Moxos soils, we determined that pre-Columbian raised-field agriculture sufficiently improved soil conditions for maize cultivation. Fire was used as a common management practice until AD 1300, at which point, the land-use strategy shifted towards less frequent burning of savannas and raised fields. Alongside a reduction in the use of fire, sweet potato cultivation and the exploitation of Inga fruits formed part of a mixed resource strategy from AD 1300 to 1450. The pre-Columbian impact on the landscape began to lessen around AD 1450, as shown by an increase in savanna trees and gallery forest. Although agriculture at the site began to decline prior to European arrival, the abandonment of raised fields was protracted, with evidence of sweet potato cultivation occurring as late as AD 1800.
Resumo:
Fire is an important component of the Earth System that is tightly coupled with climate, vegetation, biogeochemical cycles, and human activities. Observations of how fire regimes change on seasonal to millennial timescales are providing an improved understanding of the hierarchy of controls on fire regimes. Climate is the principal control on fire regimes, although human activities have had an increasing influence on the distribution and incidence of fire in recent centuries. Understanding of the controls and variability of fire also underpins the development of models, both conceptual and numerical, that allow us to predict how future climate and land-use changes might influence fire regimes. Although fires in fire-adapted ecosystems can be important for biodiversity and ecosystem function, positive effects are being increasingly outweighed by losses of ecosystem services. As humans encroach further into the natural habitat of fire, social and economic costs are also escalating. The prospect of near-term rapid and large climate changes, and the escalating costs of large wildfires, necessitates a radical re-thinking and the development of approaches to fire management that promote the more harmonious co-existence of fire and people.
Resumo:
Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico
Resumo:
Global controls on month-by-month fractional burnt area (2000–2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models – most notably, the widely assumed dependence of fire frequency on ignition rates – are evidently incorrect.
Resumo:
Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load