2 resultados para ferrous ion

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron oxidation in the bacterial ferritin EcFtnA from Escherichia coli shows marked differences from its homologue human H-chain ferritin (HuHF). While the amino acid residues that constitute the dinuclear center in these proteins are highly conserved, EcFtnA has a third iron-binding site (C site) in close proximity to the dinuclear center that is seemingly responsible for these differences. Here, we describe the first thermodynamic study of Fe2+ binding to EcFtnA and its variants to determine the location of the primary ferrous ion-binding sites on the protein and to better understand the role of the third C site in iron binding. Isothermal titration calorimetric analyses of the wild-type protein reveal the presence of two main classes of binding sites in the pH range of 6.5-7.5, ascribed to Fe2+ binding, first at the A and then the B sites. Site-directed mutagenesis of ligands in the A, B, or C sites affects the apparent Fe2+-binding stoichiometries at the unaltered sites. The data imply some degree of inter- and intrasubunit negative cooperative interaction between sites. Unlike HuHF where only the A site initially binds Fe2+, both A and B sites in EcFtnA bind Fe2+, implying a role for the C site in influencing the binding of Fe2+ at the B site of the di-iron center of EcFtnA. The ITC equations describing a binding model for three classes of independent binding sites are reported here for the first time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Theoretical calculations have been carried out on the interactions of several endoperoxides which are potential antimalarials, including the clinically useful artemisinin, with two possible sources of iron in the parasite, namely the hexa-aquo ferrous ion [Fe(H2O)(6)](2+) and haeme. DFT calculations show that the reactions of all endoperoxides considered, with both sources of iron, initially generate a Fe-O bond followed by cleavage of the O-O bond to oxygen radical species. Subsequently, they can be transformed into carbon-centred radicals of greater stability. However, with [Fe(H2O)(6)](2+) as the iron source, the oxygen-centred radical species are more likely to react further akin to Fenton's reagent, whereby iron salts encourage hydrogen peroxide to act as an oxidizing agent, and that solvent plays a major role. In contrast, when reacting with haeme, the oxygen-centred radicals interconvert to more stable carbon-centred radicals, which can then alkylate haeme. Subsequent cleavage of the Fe-O bond leads to stable and inactive antimalarial products. These results indicate that the reactivity of the endoperoxides as antimalarials is greater with iron hexahydrates for radical-mediated damage as opposed to haeme, which leads to unreactive species. Since only nanomolar quantities of hydrated metal ions could catalyse the reactions leading to damage to the parasites, this could be an alternative or competitive reaction responsible for the antimalarial activity. (c) 2005 Elsevier B.V. All rights reserved.