4 resultados para femtosecond optical heterodyne detection of optical Kerr
em CentAUR: Central Archive University of Reading - UK
Resumo:
A disposable backscatter instrument is described for optical detection of cloud in the atmosphere from a balloon-carried platform. It uses an ultra-bright light emitting diode (LED) illumination source with a photodiode detector. Scattering of the LED light by cloud droplets generates a small optical signal which is separated from background light fluctuations using a lock-in technique. The signal to noise obtained permits cloud detection using the scattered LED light, even in daytime. The response is interpreted in terms of the equivalent visual range within the cloud. The device is lightweight (150 g) and low power (∼30 mA), for use alongside a conventional meteorological radiosonde.
Resumo:
We present an application of cavity-enhanced absorption spectroscopy with an off-axis alignment of the cavity formed by two spherical mirrors and with time integration of the cavity-output intensity for detection of nitrogen dioxide (NO2) and iodine monoxide (IO) radicals using a violet laser diode at lambda = 404.278 nm. A noise-equivalent (1sigma = root-mean-square variation of the signal) fractional absorption for one optical pass of 4.5x10(-8) was demonstrated with a mirror reflectivity of similar to0.99925, a cavity length of 0.22 m and a lock-in-amplifier time constant of 3 s. Noise-equivalent detection sensitivities towards nitrogen dioxide of 1.8x10(10) molecule cm(-3) and towards the IO radical of 3.3x10(9) molecule cm(-3) were achieved in flow tubes with an inner diameter of 4 cm for a lock-in-amplifier time constant of 3 s. Alkyl peroxy radicals were detected using chemical titration with excess nitric oxide (RO2 + NO --> RO + NO2). Measurement of oxygen-atom concentrations was accomplished by determining the depletion of NO2 in the reaction NO2 + O --> NO + O-2. Noise-equivalent concentrations of alkyl peroxy radicals and oxygen atoms were 3x10(10) molecule cm(-3) in the discharge-flow-tube experiments.
Resumo:
Sensitive optical detection of nitroaromatic vapours with diketo-pyrrolopyrrole thin films is reported for the first time and the impact of thin film crystal structure and morphology on fluorescence quenching behaviour demonstrated.