4 resultados para fault model
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this work, a fault-tolerant control scheme is applied to a air handling unit of a heating, ventilation and air-conditioning system. Using the multiple-model approach it is possible to identify faults and to control the system under faulty and normal conditions in an effective way. Using well known techniques to model and control the process, this work focuses on the importance of the cost function in the fault detection and its influence on the reconfigurable controller. Experimental results show how the control of the terminal unit is affected in the presence a fault, and how the recuperation and reconfiguration of the control action is able to deal with the effects of faults.
Resumo:
This paper addresses the need for accurate predictions on the fault inflow, i.e. the number of faults found in the consecutive project weeks, in highly iterative processes. In such processes, in contrast to waterfall-like processes, fault repair and development of new features run almost in parallel. Given accurate predictions on fault inflow, managers could dynamically re-allocate resources between these different tasks in a more adequate way. Furthermore, managers could react with process improvements when the expected fault inflow is higher than desired. This study suggests software reliability growth models (SRGMs) for predicting fault inflow. Originally developed for traditional processes, the performance of these models in highly iterative processes is investigated. Additionally, a simple linear model is developed and compared to the SRGMs. The paper provides results from applying these models on fault data from three different industrial projects. One of the key findings of this study is that some SRGMs are applicable for predicting fault inflow in highly iterative processes. Moreover, the results show that the simple linear model represents a valid alternative to the SRGMs, as it provides reasonably accurate predictions and performs better in many cases.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
The extent to which cognitive models of development and maintenance of depression apply to adolescents is largely untested, despite the widespread application of Cognitive Behavior Therapy (CBT) for depressed adolescents. Cognitive models suggest that negative cognitions, including interpretation bias, play a role in etiology and maintenance of depression. Given that cognitive development is incomplete by the teenage years and that CBT is not superior to non-cognitive treatments in the treatment of adolescent depression, it is important to test the underlying model. The primary aim of this study was to test the hypothesis that interpretation biases are exhibited by depressed adolescents. Four groups of adolescents were recruited: clinically-referred depressed (n = 27), clinically-referred non-depressed (n = 24), community with elevated depression symptoms (n = 42) and healthy community (n = 150). Participants completed a 20 item ambiguous scenarios questionnaire. Clinically-referred depressed adolescents made significantly more negative interpretations and rated scenarios as less pleasant than all other groups. The results suggest that this element of the cognitive model of depression is applicable to adolescents. Other aspects of the model should be tested so that cognitive treatment can be modified or adapted if necessary.