114 resultados para fatty acid binding protein

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies suggest that low-birth weight infants show poor neonatal growth and increased susceptibility to metabolic syndrome, in particular, obesity and diabetes. Adipose tissue development is regulated by many genes, including members of the peroxisome proliferator-activated receptor (PPAR) and the fatty acid-binding protein (FABP) families. The aim of this study was to determine the influence of birth weight on key adipose and skeletal muscle tissue regulating genes. Piglets from 11 litters were ranked according to birth weight and 3 from each litter assigned to small, normal, or large-birth weight groups. Tissue samples were collected on day 7 or 14. Plasma metabolite concentrations and the expression of PPARG2, PPARA, FABP3, and FABP4 genes were determined in subcutaneous adipose tissue and skeletal muscle. Adipocyte number and area were determined histologically. Expression of FABP3 and 4 was significantly reduced in small and large, compared with normal, piglets in adipose tissue on day 7 and in skeletal muscle on day 14. On day 7, PPARA and PPARG2 were significantly reduced in adipose tissue from small and large piglets. Adipose tissue from small piglets contained more adipocytes than normal or large piglets. Birth weight had no effect on adipose tissue and skeletal muscle lipid content. Low-birth weight is associated with tissue-specific and time-dependent effects on lipid-regulating genes as well as morphological changes in adipose tissue. It remains to be seen whether these developmental changes alter an individual's susceptibility to metabolic syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Children with congenital heart disease are at risk of gut barrier dysfunction and translocation of gut bacterial antigens into the bloodstream. This may contribute to inflammatory activation and organ dysfunction postoperatively. OBJECTIVES: To investigate the role of intestinal injury and endotoxemia in the pathogenesis of organ dysfunction after surgery for congenital heart disease. METHODS: We analyzed blood levels of intestinal fatty acid binding protein and endotoxin (endotoxin activity assay) alongside global transcriptomic profiling and assays of monocyte endotoxin receptor expression in children undergoing surgery for congenital heart disease. MEASUREMENTS AND MAIN RESULTS: Levels of intestinal fatty acid binding protein and endotoxin were greater in children with duct-dependent cardiac lesions. Endotoxemia was associated with severity of vital organ dysfunction and intensive care stay. We identified activation of pathogen-sensing, antigen-processing, and immune-suppressing pathways at the genomic level postoperatively and down-regulation of pathogen-sensing receptors on circulating immune cells. CONCLUSIONS: Children undergoing surgery for congenital heart disease are at increased risk of intestinal mucosal injury and endotoxemia. Endotoxin activity correlates with a number of outcome variables in this population, and may be used to guide the use of gut-protective strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal fatty acid-binding protein gene is proposed as a candidate gene for diabetes because the protein it codes is involved in fatty acid absorption and metabolism. This study investigates the association of the Ala54Thr variant of the intestinal fatty acid-binding protein gene on type 2 diabetes mellitus and other related metabolic traits in Asian Indians. Ala54Thr polymorphism was genotyped by using polymerase chain reaction-restriction fragment length polymorphism in unrelated 773 type 2 diabetic and 899 normal glucose-tolerant (NGT) subjects, randomly chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in South India. The Ala54Thr polymorphism was not associated with type 2 diabetes mellitus or obesity. However, genotype-phenotype study revealed that the NGT subjects carrying the Thr54 allele had significantly higher 2-hour plasma glucose (P = .007), glycated hemoglobin (P = .004), 2-hour insulin (P = .027), and fasting low-density lipoprotein cholesterol (P = .032) levels compared with those with the Ala54 allele. Normal glucose-tolerant subjects with Ala54Thr and Thr54Thr genotypes had significantly higher fasting serum triglyceride levels (P = .003) compared with those with Ala54Ala. The subjects were stratified into those with hypertriglyceridemia (serum triglyceride levels >or=150 mg/dL) and those without. The odds ratio for hypertriglyceridemia for the individuals carrying the Ala54Thr genotype was 1.491 (95% confidence interval [CI], 1.22-1.83, P < .0001), and for those carrying the Thr54Thr genotype, it was 1.888 (95% CI, 1.34-2.67; P < .0001). Subjects were also stratified into those with metabolic syndrome (MS) and those without, according to modified Adult Treatment Panel III guidelines. The odds ratio (adjusted for age and sex) for MS for the individuals carrying the Ala54Thr genotype was 1.240 (95% CI, 1.02-1.51; P = .03), whereas for those carrying the Thr54Thr genotype, it was 1.812 (95% CI, 1.28-2.57; P = .001). Carriers of the Thr54 allele have associations with MS and hypertriglyceridemia in this urban South Indian population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to improve the prediction of the quantity and type of Volatile Fatty Acids (VFA) produced from fermented substrate in the rumen of lactating cows. A model was formulated that describes the conversion of substrate (soluble carbohydrates, starch, hemi-cellulose, cellulose, and protein) into VFA (acetate, propionate, butyrate, and other VFA). Inputs to the model were observed rates of true rumen digestion of substrates, whereas outputs were observed molar proportions of VFA in rumen fluid. A literature survey generated data of 182 diets (96 roughage and 86 concentrate diets). Coefficient values that define the conversion of a specific substrate into VFA were estimated meta-analytically by regression of the model against observed VFA molar proportions using non-linear regression techniques. Coefficient estimates significantly differed for acetate and propionate production in particular, between different types of substrate and between roughage and concentrate diets. Deviations of fitted from observed VFA molar proportions could be attributed to random error for 100%. In addition to regression against observed data, simulation studies were performed to investigate the potential of the estimation method. Fitted coefficient estimates from simulated data sets appeared accurate, as well as fitted rates of VFA production, although the model accounted for only a small fraction (maximally 45%) of the variation in VFA molar proportions. The simulation results showed that the latter result was merely a consequence of the statistical analysis chosen and should not be interpreted as an indication of inaccuracy of coefficient estimates. Deviations between fitted and observed values corresponded to those obtained in simulations. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 x 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100g fatty acids, C MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet–genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 X 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54:46 forage: concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6: n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/ kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18: 1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r(2) = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4: 0 to 18: 0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20: 5 n-3, and 22: 6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18: 1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Delta(4-10) and Delta(12-15)), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the potential benefits of cis-9, trans- 11 conjugated linoleic acid (CLA) for human health there is a need to develop effective strategies for enhancing milk fat CLA concentrations. In this experiment, the effect of forage type and level of concentrate in the diet on milk fatty acid composition was examined in cows given a mixture of fish oil and sunflower oil. Four late lactation Holstein-British Friesian cows were used in a 4 x 4 Latin-square experiment with a 2 x 2 factorial arrangement of treatments and 21-day experimental periods. Treatments consisted of grass (G) or maize (M) silage supplemented with low (L) or high (H) levels of concentrates (65: 35 and 35: 65; forage: concentrate ratio, on a dry matter (DM) basis, respectively) offered as a total mixed ration at a restricted level of intake (20 kg DM per day). Lipid supplements (30 g/kg DM) containing fish oil and sunflower oil (2: 3 w/w) were offered during the last 14 days of each experimental period. Treatments had no effect on total DM intake, milk yield, milk constituent output or milk fat content, but milk protein concentrations were lower (P<0.05) for G than M diets (mean 43.0 and 47.3 g/kg, respectively). Compared with grass silage, milk fat contained higher (P<0.05) amounts Of C-12: 0, C-14: 0, trans C-18:1 and long chain >= C20 (n-3) polyunsaturated fatty acids (PUFA) and lower (P<0.05) levels Of C-18:0 and trans C-18:2 when maize silage was offered. Increases in the proportion of concentrate in the diet elevated (P<0.05) C-18:2 (n-6) and long chain >= C20 (n-3) PUFA content, but reduced (P<0.05) the amount Of C-18:3 (n-3). Concentrations of trans-11 C-18:1 in milk were independent of forage type, but tended (P<0.10) to be lower for high concentrate diets (mean 7.2 and 4.0 g/100 g fatty acids, for L and H respectively). Concentrations of trans-10 C-18:1 were higher (P<0.05) in milk from maize compared with grass silage (mean 10.3 and 4.1 g/100 g fatty acids, respectively) and increased in response to high levels of concentrates in the diet (mean 4.1 and 10.3 g/100 g fatty acids, for L and H, respectively). Forage type had no effect (P>0.05) on total milk conjugated linoleic acid (CLA) (2.7 and 2.8 g/100 g fatty acids, for M and G, respectively) or cis-9, trans-11 CLA content (2.2 and 2.4 g/100 g fatty acids). Feeding high concentrate diets tended (P<0.10) to decrease total CLA (3.3 and 2.2 g/100 g fatty acids, for L and H, respectively) and cis-9, trans-11 CLA (2.9 and 1/7 g/100 g fatty acids) concentrations and increase milk trans-9, cis-11 CLA and trans-10, cis-12 CLA content. In conclusion, the basal diet is an important determinant of milk fatty acid composition when a supplement of fish oil and sunflower oil is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The present study was carried out to investigate effects of meals, rich in either saturated fatty acids (SFA), or n-6 or n-3 fatty acids, on postprandial plasma lipid and hormone concentrations as well as post-heparin plasma lipoprotein lipase (LPL) activity. DESIGN: The study was a randomized single-blind study comparing responses to three test meals. SETTING: The volunteers attended the Clinical Investigation Unit of the Royal Surrey County Hospital on three separate occasions in order to consume the meals. SUBJECTS: Twelve male volunteers with an average age of 22.5 +/- 1.4 years (mean +/- SD), were selected from the University of Surrey student population; one subject dropped out of the study because he found the test meal unpalatable. INTERVENTIONS: Three meals were given in the early evening and postprandial responses were followed overnight for 11h. The oils used to prepare each of the three test meals were: a mixed oil rich in saturated fatty acids (SFA) which mimicked the fatty acid composition of the current UK diet, corn oil, rich in n-6 fatty acids and a fish oil concentrate (MaxEPA) rich in n-3 fatty acids. The oil under investigation (40 g) was incorporated into the test meals which were otherwise identical [208 g carbohydrates, 35 g protein, 5.65 MJ (1350 kcal) energy]. Postprandial plasma triacylglycerol (TAG), gastric inhibitory polypeptide (GIP), and insulin responses, as well as post-heparin LPL activity (measured at 12 h postprandially only) were investigated. RESULTS: Fatty acids of the n-3 series significantly reduced plasma TAG responses compared to the mixed oil meal (P < 0.05) and increased post-heparin LPL activity 15 min after the injection of heparin (P < 0.01). A biphasic response was observed in TAG, with peak responses occurring at 1 h and between 3-7 h postprandially. GIP and insulin showed similar responses to the three test meals and no significant differences were observed. CONCLUSION: We conclude that fish oils can decrease postprandial plasma TAG levels partly through an increase in post-heparin LPL activity, which however, is not due to increased GIP or insulin concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen