27 resultados para farnese, alessandro

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The essay explores the socio-cultural role of the main academy in Parma, the Innominati (1574-1608), which flourished in the years when the Farnese dynasty was beginning to assert more forcefully its political control over the new state of Parma and Piacenza. The Innominati was from the start associated with the ruling dynasty, who must have recognized the importance of its cultural activities to strengthening their regime, particularly in the absence of a strong local university. This essay explores the institution’s contested position within the cultural landscape – as reflected also in its membership of courtiers, clergymen, and feudal aristocrats with more ambivalent relations with the Farnese. In particular, the focus falls on the theatrical activities of the group during the 1580s, a decade which saw the establishment of the Parma Index (1580) and the succession of the internationally celebrated Duke Alessandro Farnese (1587). Based on the little surviving evidence it is argued that the Academy in the 1580s became a creative hub for theatrical experimentation – through theoretical debate and composition, and possibly even performance. However, as relations between the Farnese and the local elites, especially feudal aristocrats, became more contested the Academy’s theatrical production and the public memory of this became increasingly controlled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three naming strategies are discussed that allow the processes of a distributed application to continue being addressed by their original logical name, along all the migrations they may be forced to undertake because of performance-improvement goals. A simple centralised solution is firstly discussed which showed a software bottleneck with the increase of the number of processes; other two solutions are considered that entail different communication schemes and different communication overheads for the naming protocol. All these strategies are based on the facility that each process is allowed to survive after migration, even in its original site, only to provide a forwarding service to those communications that used its obsolete address.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research in the last four decades has brought a considerable advance in our understanding of how the brain synthesizes information arising from different sensory modalities. Indeed, many cortical and subcortical areas, beyond those traditionally considered to be ‘associative,’ have been shown to be involved in multisensory interaction and integration (Ghazanfar and Schroeder 2006). Visuo-tactile interaction is of particular interest, because of the prominent role played by vision in guiding our actions and anticipating their tactile consequences in everyday life. In this chapter, we focus on the functional role that visuo-tactile processing may play in driving two types of body-object interactions: avoidance and approach. We will first review some basic features of visuo-tactile interactions, as revealed by electrophysiological studies in monkeys. These will prove to be relevant for interpreting the subsequent evidence arising from human studies. A crucial point that will be stressed is that these visuo-tactile mechanisms have not only sensory, but also motor-related activity that qualifies them as multisensory-motor interfaces. Evidence will then be presented for the existence of functionally homologous processing in the human brain, both from neuropsychological research in brain-damaged patients and in healthy participants. The final part of the chapter will focus on some recent studies in humans showing that the human motor system is provided with a multisensory interface that allows for continuous monitoring of the space near the body (i.e., peripersonal space). We further demonstrate that multisensory processing can be modulated on-line as a consequence of interacting with objects. This indicates that, far from being passive, the monitoring of peripersonal space is an active process subserving actions between our body and objects located in the space around us.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dualism has long distinguished between the mental and the body experiences. Probing the structure and organisation of the self traditionally calls for a distinction between these two sides of the self coin. It is far beyond the scope of this chapter to address these philosophical issues, and our starting point will be the simple distinction between reflective processes involved in the elaboration of body image, self awareness and self-recognition (i.e. ‘the self’) and the sensori-motor dialogues involved in action control, reactions and automatisms (i.e. ‘the body’ schema). This oversimplification does not take into account the complex interactions taking place between these two levels of description, but our initial aim will be to distinguish between them, before addressing the question of their interactions. Cognitive and sensori-motor processes have frequently been distinguished (review: Rossetti and Revonsuo 2000), and it may be proposed that a similar dissociation can be put forward, a priori, between a central representation of self and a bodily representation corresponding to body schema (Figure 1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A statistical methodology is proposed and tested for the analysis of extreme values of atmospheric wave activity at mid-latitudes. The adopted methods are the classical block-maximum and peak over threshold, respectively based on the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD). Time-series of the ‘Wave Activity Index’ (WAI) and the ‘Baroclinic Activity Index’ (BAI) are computed from simulations of the General Circulation Model ECHAM4.6, which is run under perpetual January conditions. Both the GEV and the GPD analyses indicate that the extremes ofWAI and BAI areWeibull distributed, this corresponds to distributions with an upper bound. However, a remarkably large variability is found in the tails of such distributions; distinct simulations carried out under the same experimental setup provide sensibly different estimates of the 200-yr WAI return level. The consequences of this phenomenon in applications of the methodology to climate change studies are discussed. The atmospheric configurations characteristic of the maxima and minima of WAI and BAI are also examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid clouds play a profound role in the global radiation budget but it is difficult to remotely retrieve their vertical profile. Ordinary narrow field-of-view (FOV) lidars receive a strong return from such clouds but the information is limited to the first few optical depths. Wideangle multiple-FOV lidars can isolate radiation scattered multiple times before returning to the instrument, often penetrating much deeper into the cloud than the singly-scattered signal. These returns potentially contain information on the vertical profile of extinction coefficient, but are challenging to interpret due to the lack of a fast radiative transfer model for simulating them. This paper describes a variational algorithm that incorporates a fast forward model based on the time-dependent two-stream approximation, and its adjoint. Application of the algorithm to simulated data from a hypothetical airborne three-FOV lidar with a maximum footprint width of 600m suggests that this approach should be able to retrieve the extinction structure down to an optical depth of around 6, and total opticaldepth up to at least 35, depending on the maximum lidar FOV. The convergence behavior of Gauss-Newton and quasi-Newton optimization schemes are compared. We then present results from an application of the algorithm to observations of stratocumulus by the 8-FOV airborne “THOR” lidar. It is demonstrated how the averaging kernel can be used to diagnose the effective vertical resolution of the retrieved profile, and therefore the depth to which information on the vertical structure can be recovered. This work enables exploitation of returns from spaceborne lidar and radar subject to multiple scattering more rigorously than previously possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, whereas the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although tactile representations of the two body sides are initially segregated into opposite hemispheres of the brain, behavioural interactions between body sides exist and can be revealed under conditions of tactile double simultaneous stimulation (DSS) at the hands. Here we examined to what extent vision can affect body side segregation in touch. To this aim, we changed hand-related visual input while participants performed a go/no-go task to detect a tactile stimulus delivered to one target finger (e.g., right index), stimulated alone or with a concurrent non-target finger either on the same hand (e.g., right middle finger) or on the other hand (e.g., left index finger = homologous; left middle finger = non-homologous). Across experiments, the two hands were visible or occluded from view (Experiment 1), images of the two hands were either merged using a morphing technique (Experiment 2), or were shown in a compatible vs incompatible position with respect to the actual posture (Experiment 3). Overall, the results showed reliable interference effects of DSS, as compared to target-only stimulation. This interference varied as a function of which non-target finger was stimulated, and emerged both within and between hands. These results imply that the competition between tactile events is not clearly segregated across body sides. Crucially, non-informative vision of the hand affected overall tactile performance only when a visual/proprioceptive conflict was present, while neither congruent nor morphed hand vision affected tactile DSS interference. This suggests that DSS operates at a tactile processing stage in which interactions between body sides can occur regardless of the available visual input from the body.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the effect of tactile double simultaneous stimulation (DSS) within and between hands to examine spatial coding of touch at the fingers. Participants performed a go/no-go task to detect a tactile stimulus delivered to one target finger (e.g., right index), stimulated alone or with a concurrent non-target finger, either on the same hand (e.g., right middle finger) or on the other hand (e.g., left index finger=homologous; left middle finger=non-homologous). Across blocks we also changed the unseen hands posture (both hands palm down, or one hand rotated palm-up). When both hands were palm-down DSS interference effects emerged both within and between hands, but only when the non-homologous finger served as non-target. This suggests a clear segregation between the fingers of each hand, regardless of finger side. By contrast, when one hand was palm-up interference effects emerged only within hand, whereas between hands DSS interference was considerably reduced or absent. Thus, between hands interference was clearly affected by changes in hands posture. Taken together, these findings provide behavioral evidence in humans for multiple spatial coding of touch during tactile DSS at the fingers. In particular, they confirm the existence of representational stages of touch that distinguish between body-regions more than body-sides. Moreover, they show that the availability of tactile stimulation side becomes prominent when postural update is required.