115 resultados para farm accountancy data network
em CentAUR: Central Archive University of Reading - UK
Resumo:
Agri-environment schemes (AESs) have been implemented across EU member states in an attempt to reconcile agricultural production methods with protection of the environment and maintenance of the countryside. To determine the extent to which such policy objectives are being fulfilled, participating countries are obliged to monitor and evaluate the environmental, agricultural and socio-economic impacts of their AESs. However, few evaluations measure precise environmental outcomes and critically, there are no agreed methodologies to evaluate the benefits of particular agri-environmental measures, or to track the environmental consequences of changing agricultural practices. In response to these issues, the Agri-Environmental Footprint project developed a common methodology for assessing the environmental impact of European AES. The Agri-Environmental Footprint Index (AFI) is a farm-level, adaptable methodology that aggregates measurements of agri-environmental indicators based on Multi-Criteria Analysis (MCA) techniques. The method was developed specifically to allow assessment of differences in the environmental performance of farms according to participation in agri-environment schemes. The AFI methodology is constructed so that high values represent good environmental performance. This paper explores the use of the AFI methodology in combination with Farm Business Survey data collected in England for the Farm Accountancy Data Network (FADN), to test whether its use could be extended for the routine surveillance of environmental performance of farming systems using established data sources. Overall, the aim was to measure the environmental impact of three different types of agriculture (arable, lowland livestock and upland livestock) in England and to identify differences in AFI due to participation in agri-environment schemes. However, because farm size, farmer age, level of education and region are also likely to influence the environmental performance of a holding, these factors were also considered. Application of the methodology revealed that only arable holdings participating in agri-environment schemes had a greater environmental performance, although responses differed between regions. Of the other explanatory variables explored, the key factors determining the environmental performance for lowland livestock holdings were farm size, farmer age and level of education. In contrast, the AFI value of upland livestock holdings differed only between regions. The paper demonstrates that the AFI methodology can be used readily with English FADN data and therefore has the potential to be applied more widely to similar data sources routinely collected across the EU-27 in a standardised manner.
Resumo:
This paper analyses the impacts of the 2003 CAP reform on the production of Italian olive oil controlling for the regional differences in olive oil production as well as for the differences between years. Italian olive oil production time series data from the Farm Accountancy Data Network for the 2000-2010 period at regional level is used to examine the effect of the 2003 Fischler reform on the production of olive oil. Production costs and payments received by farmers to support their income are considered. The data were collected at micro level based on a sample of farms representative of the production systems in the country. In order to consider the differences in production among the regions, eight representative regions in terms of surveyed farms are considered: Liguria, Toscana, Umbria, Lazio, Campania, Calabria, Puglia and Sicilia. We found that the most important factors affecting the production of olive oil are the area under olive groves and labour productivity. Results also show no evidence that the level of payments have an impact to the level of production, however, the type of payments has. Future work should explore the impact of the 2003 reform into the technical and production efficiency of the Italian olive oil farmers. It would be interesting to link the measures introduced by the cross compliance and the management practices of the different farms to have a more complete picture of the various parameters influencing the production of olive oil.
Resumo:
We evaluate the profitability and technical efficiency of aquaculture in the Philippines. Farm-level data are used to compare two production systems corresponding to the intensive monoculture of tilapia in freshwater ponds and the extensive polyculture of shrimps and fish in brackish water ponds. Both activities are very lucrative, with brackish water aquaculture achieving the higher level of profit per farm. Stochastic frontier production functions reveal that technical efficiency is low in brackish water aquaculture, with a mean of 53%, explained primarily by the operator's experience and by the frequency of his visits to the farm. In freshwater aquaculture, the farms achieve a mean efficiency level of 83%. The results suggest that the provision of extension services to brackish water fish farms might be a cost-effective way of increasing production and productivity in that sector. By contrast, technological change will have to be the driving force of future productivity growth in freshwater aquaculture.
Resumo:
This paper empirically investigates how the productivity of pesticide differs in Bt versus non-Bt technology for South African cotton smallholders, and what the implications for pesticide use levels are in the two technologies. This is accomplished by applying a damage control framework to farm-level data from Makhathini flats, KwaZulu-Natal. Contrary to findings elsewhere, notably China, that farmers over-use pesticides and that transgenic technology benefits farmers by enabling large reductions in pesticide use, the econometric evidence here indicates that non-Bt smallholders in South Africa under-use pesticide. Thus, the main potential contribution of the new technology is to enable them to realise lost productivity resulting from under-use. By providing a natural substitute for pesticide, the Bt technology enables the smallholders to circumvent credit and labour constraints associated with pesticide application. Thus, the same technology that greatly reduces pesticide applications but only mildly affects yields, when used by large-scale farmers in China and elsewhere, benefits South-African smallholder farmers primarily via a yield-enhancing effect.
Resumo:
Sustainable Intensification (SI) of agriculture has recently received widespread political attention, in both the UK and internationally. The concept recognises the need to simultaneously raise yields, increase input use efficiency and reduce the negative environmental impacts of farming systems to secure future food production and to sustainably use the limited resources for agriculture. The objective of this paper is to outline a policy-making tool to assess SI at a farm level. Based on the method introduced by Kuosmanen and Kortelainen (2005), we use an adapted Data Envelopment Analysis (DEA) to consider the substitution possibilities between economic value and environmental pressures generated by farming systems in an aggregated index of Eco-Efficiency. Farm level data, specifically General Cropping Farms (GCFs) from the East Anglian River Basin Catchment (EARBC), UK were used as the basis for this analysis. The assignment of weights to environmental pressures through linear programming techniques, when optimising the relative Eco-Efficiency score, allows the identification of appropriate production technologies and practices (integrating pest management, conservation farming, precision agriculture, etc.) for each farm and therefore indicates specific improvements that can be undertaken towards SI. Results are used to suggest strategies for the integration of farming practices and environmental policies in the framework of SI of agriculture. Paths for improving the index of Eco-Efficiency and therefore reducing environmental pressures are also outlined.
Resumo:
Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.
Resumo:
This article explores how data envelopment analysis (DEA), along with a smoothed bootstrap method, can be used in applied analysis to obtain more reliable efficiency rankings for farms. The main focus is the smoothed homogeneous bootstrap procedure introduced by Simar and Wilson (1998) to implement statistical inference for the original efficiency point estimates. Two main model specifications, constant and variable returns to scale, are investigated along with various choices regarding data aggregation. The coefficient of separation (CoS), a statistic that indicates the degree of statistical differentiation within the sample, is used to demonstrate the findings. The CoS suggests a substantive dependency of the results on the methodology and assumptions employed. Accordingly, some observations are made on how to conduct DEA in order to get more reliable efficiency rankings, depending on the purpose for which they are to be used. In addition, attention is drawn to the ability of the SLICE MODEL, implemented in GAMS, to enable researchers to overcome the computational burdens of conducting DEA (with bootstrapping).