33 resultados para factors models
em CentAUR: Central Archive University of Reading - UK
Resumo:
The uptake and storage of anthropogenic carbon in the North Atlantic is investigated using different configurations of ocean general circulation/carbon cycle models. We investigate how different representations of the ocean physics in the models, which represent the range of models currently in use, affect the evolution of CO2 uptake in the North Atlantic. The buffer effect of the ocean carbon system would be expected to reduce ocean CO2 uptake as the ocean absorbs increasing amounts of CO2. We find that the strength of the buffer effect is very dependent on the model ocean state, as it affects both the magnitude and timing of the changes in uptake. The timescale over which uptake of CO2 in the North Atlantic drops to below preindustrial levels is particularly sensitive to the ocean state which sets the degree of buffering; it is less sensitive to the choice of atmospheric CO2 forcing scenario. Neglecting physical climate change effects, North Atlantic CO2 uptake drops below preindustrial levels between 50 and 300 years after stabilisation of atmospheric CO2 in different model configurations. Storage of anthropogenic carbon in the North Atlantic varies much less among the different model configurations, as differences in ocean transport of dissolved inorganic carbon and uptake of CO2 compensate each other. This supports the idea that measured inventories of anthropogenic carbon in the real ocean cannot be used to constrain the surface uptake. Including physical climate change effects reduces anthropogenic CO2 uptake and storage in the North Atlantic further, due to the combined effects of surface warming, increased freshwater input, and a slowdown of the meridional overturning circulation. The timescale over which North Atlantic CO2 uptake drops to below preindustrial levels is reduced by about one-third, leading to an estimate of this timescale for the real world of about 50 years after the stabilisation of atmospheric CO2. In the climate change experiment, a shallowing of the mixed layer depths in the North Atlantic results in a significant reduction in primary production, reducing the potential role for biology in drawing down anthropogenic CO2.
Resumo:
In the 'rice-wheat' and the 'cotton-wheat' farming systems of Pakistan's Punjab, late planting of wheat is a perennial problem due to often delayed harvesting of the previously planted and late maturing rice and cotton crops. This leaves very limited time for land preparation for 'on-time' planting of wheat. 'No-tillage' technologies that reduce the turn-round time for wheat cultivation after rice and cotton have been developed, but their uptake has not been as expected.-This paper attempts to determine the farm and farmer characteristics and other socio-economic factors that influence the adoption of 'no-tillage' technologies'. Logit models were developed for the analysis undertaken. In the 'cotton-wheat' system personal characteristics like education, tenancy status, attitude towards risk implied in the use of new technologies and contact with extension agents are the main factors that affect adoption. As regards the 'rice-wheat' system, resource endowments such as farm size, access to a 'no-tillage' drill, clayey soils and the area sown to the rice-wheat sequence along with tenancy and contact with extension agents were dominant in explaining adoption. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Determining how El Niño and its impacts may change over the next 10 to 100 years remains a difficult scientific challenge. Ocean–atmosphere coupled general circulation models (CGCMs) are routinely used both to analyze El Niño mechanisms and teleconnections and to predict its evolution on a broad range of time scales, from seasonal to centennial. The ability to simulate El Niño as an emergent property of these models has largely improved over the last few years. Nevertheless, the diversity of model simulations of present-day El Niño indicates current limitations in our ability to model this climate phenomenon and to anticipate changes in its characteristics. A review of the several factors that contribute to this diversity, as well as potential means to improve the simulation of El Niño, is presented.
Resumo:
The paper discusses the wide variety of ways in which remotely sensed data are being utilized in river flood inundation modeling. Model parameterization is being aided using airborne LiDAR data to provide topography of the floodplain for use as model bathymetry, and vegetation heights in the floodplain for use in estimating floodplain friction factors. Model calibration and validation are being aided by comparing the flood extent observed in SAR images with the extent predicted by the model. The recent extension of this to the observation of urban flooding using high resolution TerraSAR-X data is described. Possible future research directions are considered.
Resumo:
The Rio Tinto river in SW Spain is a classic example of acid mine drainage and the focus of an increasing amount of research including environmental geochemistry, extremophile microbiology and Mars-analogue studies. Its 5000-year mining legacy has resulted in a wide range of point inputs including spoil heaps and tunnels draining underground workings. The variety of inputs and importance of the river as a research site make it an ideal location for investigating sulphide oxidation mechanisms at the field scale. Mass balance calculations showed that pyrite oxidation accounts for over 93% of the dissolved sulphate derived from sulphide oxidation in the Rio Tinto point inputs. Oxygen isotopes in water and sulphate were analysed from a variety of drainage sources and displayed delta O-18((SO4-H2O)) values from 3.9 to 13.6 parts per thousand, indicating that different oxidation pathways occurred at different sites within the catchment. The most commonly used approach to interpreting field oxygen isotope data applies water and oxygen fractionation factors derived from laboratory experiments. We demonstrate that this approach cannot explain high delta O-18((SO4-H2O)) values in a manner that is consistent with recent models of pyrite and sulphoxyanion oxidation. In the Rio Tinto, high delta O-18((SO4-H2O)) values (11.2-13.6 parts per thousand) occur in concentrated (Fe = 172-829 mM), low pH (0.88-1.4), ferrous iron (68-91% of total Fe) waters and are most simply explained by a mechanism involving a dissolved sulphite intermediate, sulphite-water oxygen equilibrium exchange and finally sulphite oxidation to sulphate with O-2. In contrast, drainage from large waste blocks of acid volcanic tuff with pyritiferous veins also had low pH (1.7). but had a low delta O-18((SO4-H2O)) value of 4.0 parts per thousand and high concentrations of ferric iron (Fe(III) = 185 mM, total Fe = 186 mM), suggesting a pathway where ferric iron is the primary oxidant, water is the primary source of oxygen in the sulphate and where sulphate is released directly from the pyrite surface. However, problems remain with the sulphite-water oxygen exchange model and recommendations are therefore made for future experiments to refine our understanding of oxygen isotopes in pyrite oxidation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a new bio-indicator method for assessing wetland ecosystem health: as such, the study is particularly relevant to current legislation such as the EU Water Framework Directive, which provides a baseline of the current status Of Surface waters. Seven wetland sites were monitored across northern Britain, with model construction data for predicting, eco-hydroloplical relationships collected from five sites during 1999, Two new sites and one repeat site were monitored during 2000 to provide model test data. The main growing season for the vegetation, and hence the sampling period, was May-August during both years. Seasonal mean concentrations of nitrate (NO3-) in surface and soil water samples during 1999 ranged from 0.01 to 14.07 mg N 1(-1), with a mean value of 1.01 mg N 1(-1). During 2000, concentrations ranged from trace level (<0.01 m- N 1(-1)) to 9.43 mg N 1(-1), with a mean of 2.73 mg N 1(.)(-1) Surface and soil-water nitrate concentrations did not influence plant species composition significantly across representative tall herb fen and mire communities. Predictive relationships were found between nitrate concentrations and structural characteristics of the wetland vegetation, and a model was developed which predicted nitrate concentrations from measures of plant diversity, canopy structure and density of reproductive structures. Two further models, which predicted stem density and density of reproductive structures respectively, utilised nitrate concentration as one of the independent predictor variables. Where appropriate, the models were tested using data collected during 2000. This approach is complementary to species-based monitoring, representing a useful and simple too] to assess ecological status in target wetland systems and has potential for bio-indication purposes.
Resumo:
Although accuracy of digital elevation models (DEMs) can be quantified and measured in different ways, each is influenced by three main factors: terrain character, sampling strategy and interpolation method. These parameters, and their interaction, are discussed. The generation of DEMs from digitised contours is emphasised because this is the major source of DEMs, particularly within member countries of OEEPE. Such DEMs often exhibit unwelcome artifacts, depending on the interpolation method employed. The origin and magnitude of these effects and how they can be reduced to improve the accuracy of the DEMs are also discussed.
Resumo:
The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.
Resumo:
A cross-sectional serological survey of A. marginale was conducted on 200 randomly selected smallholder farms in each of the Tanga and Iringa Regions of Tanzania between January and April 1999. Sera, from dairy cattle of all ages, sexes and breeds were tested for antibodies against A. marginale using an indirect enzyme-linked immunosorbent assay. Antibodies to A. marginale were present in cattle throughout the study areas and the overall prevalence was 20% for Tanga and 37% for Iringa. The forces of infection based on the age seroprevalence profile were estimated at 8 for Tanga and 15 for Iringa per 100 cattle years-risk, respectively. In both regions, seroprevalence increased with age (β = 0.01 and 0.017 per year of age, p < 0.005, in Tanga and Iringa, respectively). Older animals in Iringa were significantly and negatively associated with decreased seropositivity (β = −0.002, p = 0.0029). Further results of logistic regression models reveal that geographic location of animals in Tanga was associated with seropositivity (odds ratio (OR) = 2.94, p = 0.005, for Tanga Rural and OR = 2.38, p = 0.066, for Muheza). Animals acquired as a gift in Iringa had higher odds for seropositivity than brought-in cattle (OR = 2.44, p = 0.005). Our study has identified and quantified some key risk factors that can guide planners devising disease control strategies.
Resumo:
A cross-sectional study of serum antibody responses of cattle to tick-borne pathogens (Theileria parva, Theileria mutans, Anaplasma marginale, Babesia bigemina and Babesia bovis) was conducted on smallholder dairy farms in Tanga and Iringa Regions of Tanzania. Seroprevalence was highest for T. parva (48% in Iringa and 23% in Tanga) and B. bigemina (43% in Iringa and 27% in Tanga) and lowest for B. bovis (12% in Iringa and 6% in Tanga). We use spatial and non-spatial models, fitted using classical and Bayesian methods, to explore risk factors associated with seroprevalence. These include both fixed effects (age, grazing history and breeding status) and random effects (farm and local spatial effects). In both regions, seroprevalence for all tick-borne pathogens increased significantly with age. Animals pasture grazed in the 3 months prior to the start of the sampling period were significantly more likely to be seropositive for Theileria spp. and Babesia spp. Pasture grazed animals were more likely to be seropositive than zero-grazed animals for A. marginale, but the relationship was weaker than that observed for the other four pathogens. This study did not detect any significant differences in seroprevalence associated with other management-related variables, including the method or frequency of acaricide application. After adjusting for age, there was weak evidence of localised (< 5 km) spatial correlation in exposure to some of the tick borne diseases. However, this was small compared with the 'farm-effect', suggesting that risk factors specific to the farm were more important than those common to the local neighbourhood. Many animals were seropositive for more than one pathogen and the correlation between exposure to the different pathogens remained after adjusting for the identified risk factors. Identifying the determinants of exposure to multiple tick-borne pathogens and characterizing local variation in risk will assist in the development of more effective control strategies for smallholder dairy farms. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A cross-sectional serological survey of A. marginale was conducted on 200 randomly selected smallholder farms in each of the Tanga and Iringa Regions of Tanzania between January and April 1999. Sera, from dairy cattle of all ages, sexes and breeds were tested for antibodies against A. marginale using an indirect enzyme-linked immunosorbent assay. Antibodies to A. marginale were present in cattle throughout the study areas and the overall prevalence was 20% for Tanga and 37% for Iringa. The forces of infection based on the age seroprevalence profile were estimated at 8 for Tanga and 15 for Iringa per 100 cattle years-risk, respectively. In both regions, seroprevalence increased with age (beta = 0.01 and 0.017 per year of age, p < 0.005, in Tanga and Iringa, respectively). Older animals in Iringa were significantly and negatively associated with decreased seropositivity (beta = -0.002, p = 0.0029). Further results of logistic regression models reveal that geographic location of animals in Tanga was associated with seropositivity (odds ratio (OR) = 2.94, p = 0.005, for Tanga Rural and OR = 2.38, p = 0.066, for Muheza). Animals acquired as a gift in Iringa had higher odds for seropositivity than brought-in cattle (OR = 2.44, p = 0.005). Our study has identified and quantified some key risk factors that can guide planners devising disease control strategies.
Resumo:
Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Attempts to reduce the energy consumed in UK homes have met with limited success. One reason for this is a lack of understanding of how people interact with domestic technology – heating systems, lights, electrical equipment and so forth. Attaining such an understanding is hampered by a chronic shortage of detailed energy use data matched to descriptions of the house, the occupants, the internal conditions and the installed services and appliances. Without such information it is impossible to produce transparent and valid models for understanding and predicting energy use. The Carbon Reduction in Buildings (CaRB) consortium of five UK universities plans to develop socio-technical models of energy use, underpinned by a flow of data from a longitudinal monitoring campaign involving several hundred UK homes. This paper outlines the models proposed, the preliminary monitoring work and the structure of the proposed longitudinal study.
Resumo:
In addition to projected increases in global mean sea level over the 21st century, model simulations suggest there will also be changes in the regional distribution of sea level relative to the global mean. There is a considerable spread in the projected patterns of these changes by current models, as shown by the recent Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (AR4). This spread has not reduced from that given by the Third Assessment models. Comparison with projections by ensembles of models based on a single structure supports an earlier suggestion that models of similar formulation give more similar patterns of sea level change. Analysing an AR4 ensemble of model projections under a business-as-usual scenario shows that steric changes (associated with subsurface ocean density changes) largely dominate the sea level pattern changes. The relative importance of subsurface temperature or salinity changes in contributing to this differs from region to region and, to an extent, from model-to-model. In general, thermosteric changes give the spatial variations in the Southern Ocean, halosteric changes dominate in the Arctic and strong compensation between thermosteric and halosteric changes characterises the Atlantic. The magnitude of sea level and component changes in the Atlantic appear to be linked to the amount of Atlantic meridional overturning circulation (MOC) weakening. When the MOC weakening is substantial, the Atlantic thermosteric patterns of change arise from a dominant role of ocean advective heat flux changes.
Resumo:
A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.