161 resultados para extreme rainfall

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to characterise the rainfall exceptionality and the meteorological context of the 20 February 2010 flash-floods in Madeira (Portugal). Daily and hourly precipitation records from the available rain-gauge station networks are evaluated in order to reconstitute the temporal evolution of the rainstorm, as its geographic incidence, contributing to understand the flash-flood dynamics and the type and spatial distribution of the associated impacts. The exceptionality of the rainstorm is further confirmed by the return period associated with the daily precipitation registered at the two long-term record stations, with 146.9 mm observed in the city of Funchal and 333.8 mm on the mountain top, corresponding to an estimated return period of approximately 290 yr and 90 yr, respectively. Furthermore, the synoptic associated situation responsible for the flash-floods is analysed using different sources of information, e.g., weather charts, reanalysis data, Meteosat images and radiosounding data, with the focus on two main issues: (1) the dynamical conditions that promoted such anomalous humidity availability over the Madeira region on 20 February 2010 and (2) the uplift mechanism that induced deep convection activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leading patterns of observed monthly extreme rainfall variability in Australia are examined using an Empirical Orthogonal Teleconnection (EOT) method. Extreme rainfall variability is more closely related to mean rainfall variability during austral summer than in winter. The leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme rainfall than is the case for mean rainfall EOTs. We illustrate that, as with mean rainfall, the El Niño-Southern Oscillation (ENSO) has the strongest association with warm-season extreme rainfall variability, while in the cool-season the primary drivers are atmospheric blocking and the subtropical ridge. The Indian Ocean Dipole and Southern Annular Mode also have significant relationships with patterns of variability during austral winter and spring. Leading patterns of summer extreme rainfall variability have predictability several months ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from Indian Ocean SSTs. Predictability from the Pacific is greater for wetter than average summer months than for months that are drier than average, whereas for the Indian Ocean the relationship has greater linearity. Several cool-season EOTs are associated with mid-latitude synoptic-scale patterns along the south and east coasts. These patterns have common atmospheric signatures denoting moist onshore flow and strong cyclonic anomalies often to the north of a blocking anti-cyclone. Tropical cyclone activity is observed to have significant relationships with some warm season EOTs. This analysis shows that extreme rainfall variability in Australia can be related to remote drivers and local synoptic-scale patterns throughout the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme rainfall events continue to be one of the largest natural hazards in the UK. In winter, heavy precipitation and floods have been linked with intense moisture transport events associated with atmospheric rivers (ARs), yet no large-scale atmospheric precursors have been linked to summer flooding in the UK. This study investigates the link between ARs and extreme rainfall from two perspectives: 1) Given an extreme rainfall event, is there an associated AR? 2) Given an AR, is there an associated extreme rainfall event? We identify extreme rainfall events using the UK Met Office daily rain-gauge dataset and link these to ARs using two different horizontal resolution atmospheric datasets (ERA-Interim and 20th Century Re-analysis). The results show that less than 35% of winter ARs and less than 15% of summer ARs are associated with an extreme rainfall event. Consistent with previous studies, at least 50% of extreme winter rainfall events are associated with an AR. However, less than 20% of the identified summer extreme rainfall events are associated with an AR. The dependence of the water vapor transport intensity threshold used to define an AR on the years included in the study, and on the length of the season, is also examined. Including a longer period (1900-2012) compared to previous studies (1979-2005) reduces the water vapor transport intensity threshold used to define an AR.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is generally agreed that changing climate variability, and the associated change in climate extremes, may have a greater impact on environmentally vulnerable regions than a changing mean. This research investigates rainfall variability, rainfall extremes, and their associations with atmospheric and oceanic circulations over southern Africa, a region that is considered particularly vulnerable to extreme events because of numerous environmental, social, and economic pressures. Because rainfall variability is a function of scale, high-resolution data are needed to identify extreme events. Thus, this research uses remotely sensed rainfall data and climate model experiments at high spatial and temporal resolution, with the overall aim being to investigate the ways in which sea surface temperature (SST) anomalies influence rainfall extremes over southern Africa. Extreme rainfall identification is achieved by the high-resolution microwave/infrared rainfall algorithm dataset. This comprises satellite-derived daily rainfall from 1993 to 2002 and covers southern Africa at a spatial resolution of 0.1° latitude–longitude. Extremes are extracted and used with reanalysis data to study possible circulation anomalies associated with extreme rainfall. Anomalously cold SSTs in the central South Atlantic and warm SSTs off the coast of southwestern Africa seem to be statistically related to rainfall extremes. Further, through a number of idealized climate model experiments, it would appear that both decreasing SSTs in the central South Atlantic and increasing SSTs off the coast of southwestern Africa lead to a demonstrable increase in daily rainfall and rainfall extremes over southern Africa, via local effects such as increased convection and remote effects such as an adjustment of the Walker-type circulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Changes in climate variability and, in particular, changes in extreme climate events are likely to be of far more significance for environmentally vulnerable regions than changes in the mean state. It is generally accepted that sea-surface temperatures (SSTs) play an important role in modulating rainfall variability. Consequently, SSTs can be prescribed in global and regional climate modelling in order to study the physical mechanisms behind rainfall and its extremes. Using a satellite-based daily rainfall historical data set, this paper describes the main patterns of rainfall variability over southern Africa, identifies the dates when extreme rainfall occurs within these patterns, and shows the effect of resolution in trying to identify the location and intensity of SST anomalies associated with these extremes in the Atlantic and southwest Indian Ocean. Derived from a Principal Component Analysis (PCA), the results also suggest that, for the spatial pattern accounting for the highest amount of variability, extremes extracted at a higher spatial resolution do give a clearer indication regarding the location and intensity of anomalous SST regions. As the amount of variability explained by each spatial pattern defined by the PCA decreases, it would appear that extremes extracted at a lower resolution give a clearer indication of anomalous SST regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UKMeteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is underestimated (over-estimated) over wet (dry) regions of southern Africa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synoptic evolution of three tropical–extratropical (TE) interactions, each responsible for extreme rainfall events over southern Africa, is discussed in detail. Along with the consideration of previously studied events, common features of these heavy rainfall producing tropical temperate troughs (TTTs) over southern Africa are discussed. It is found that 2 days prior to an event, northeasterly moisture transports across Botswana, set up by the Angola low, are diverted farther south into the semiarid region of subtropical southern Africa. The TTTs reach full maturity as a TE cloud band, rooted in the central subcontinent, which is triggered by upper-level divergence along the leading edge of an upper-tropospheric westerly wave trough. Convection and rainfall within the cloud band is supported by poleward moisture transports with subtropical air rising as it leaves the continent and joins the midlatitude westerly flow. It is shown that these systems fit within a theoretical framework describing similar TE interactions found globally. Uplift forcing for the extreme rainfall of each event is investigated. Unsurprisingly, quasigeostrophic uplift is found to dominate in the midlatitudes with convective processes strongest in the subtropics. Rainfall in the semiarid interior of South Africa appears to be a result of quasigeostrophically triggered convection. Investigation of TTT formation in the context of planetary waves shows that early development is sometimes associated with previous anticyclonic wave breaking south of the subcontinent, with full maturity of TTTs occurring as a potential vorticity trough approaches the continent from the west. Sensitivity to upstream wave perturbations and effects on anticyclonic wave breaking in the South Indian Ocean are also observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical-extratropical cloud band systems over southern Africa, known as tropical temperate troughs (TTTs), are known to contribute substantially to South African summer rainfall. This study performs a comprehensive assessment of the seasonal cycle and rainfall contribution of TTTs by using a novel object-based strategy that explicitly tracks these systems for their full life cycle. The methodology incorporates a simple assignment of station rainfall data to each event, thereby creating a database containing detailed rainfall characteristics for each TTT. This is used to explore the importance of TTTs for rain days and climatological rainfall totals in October–March. Average contributions range from 30 to 60 % with substantial spatial heterogeneity observed. TTT rainfall contributions over the Highveld and eastern escarpment are lower than expected. A short analysis of TTT rainfall variability indicates TTTs provide substantial, but not dominant, intraseasonal and interannual variability in station rainfall totals. TTTs are however responsible for a high proportion of heavy rainfall days. Of 52 extreme rainfall events in the 1979–1999 period, 30 are associated with these tropical-extratropical interactions. Cut-off lows were included in the evolution of 6 of these TTTs. The study concludes with an analysis of the question: does the Madden-Julian Oscillation influence the intensity of TTT rainfall over South Africa? Results suggest a weak but significant suppression (enhancement) of intensity during phase 1(6).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the feasibility of using the singular vector technique to create initial condition perturbations for short-range ensemble prediction systems (SREPS) focussing on predictability of severe local storms and in particular deep convection. For this a new final time semi-norm based on the convective available potential energy (CAPE) is introduced. We compare singular vectors using the CAPE-norm with SVs using the more common total energy (TE) norm for a 2-week summer period in 2007, which includes a case of mesoscale extreme rainfall in the south west of Finland. The CAPE singular vectors perturb the CAPE field by increasing the specific humidity and temperature of the parcel and increase the lapse rate above the parcel in the lower troposphere consistent with physical considerations. The CAPE-SVs are situated in the lower troposphere. This in contrast to TE-SVs with short optimization times which predominantly remain in the high troposphere. By examining the time evolution of the CAPE singular values we observe that the convective event in the south west of Finland is clearly associated with high CAPE singular values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the first part of this paper (Ulbrich et al. 2003), we gave a description of the August 2002 rainfall events and the resultant floods, in particular of the flood wave of the River Elbe. The extreme precipitation sums observed in the first half of the month were primarily associated with two rainfall episodes. The first episode occurred on 6/7 August 2002. The main rainfall area was situated over Lower Austria, the south-western part of the Czech Republic and south-eastern Germany. A severe flash flood was produced in the Lower Austrian Waldviertel (`forest quarter’ ). The second episode on 11± 13 August 2002 most severely affected the Erz Mountains and western parts of the Czech Republic. During this second episode 312mm of rain was recorded between 0600GMT on 12 August and 0600GMT on 13 August at the Zinnwald weather station in the ErzMountains, which is a new 24-hour record for Germany. The flash floods resulting from this rainfall episode and the subsequent Elbe flood produced the most expensive weatherrelated catastrophe in Europe in recent decades. In this part of the paper we discuss the meteorological conditions and physical mechanisms leading to the two main events. Similarities to the conditions that led to the recent summer floods of the River Oder in 1997 and the River Vistula in 2001 will be shown. This will lead us to a consideration of trends in extreme rainfall over Europe which are found in numerical simulations of anthropogenic climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, change in rainfall, temperature and river discharge are analysed over the last three decades in Central Vietnam. Trends and rainfall indices are evaluated using non-parametric tests at different temporal levels. To overcome the sparse locally available network, the high resolution APHRODITE gridded dataset is used in addition to the existing rain gauges. Finally, existing linkages between discharge changes and trends in rainfall and temperature are explored. Results are indicative of an intensification of rainfall (+15%/decade), with more extreme and longer events. A significant increase in winter rainfall and a decrease in consecutive dry days provides strong evidence for a lengthening wet season in Central Vietnam. In addition, trends based on APHRODITE suggest a strong orographic signal in winter and annual trends. These results underline the local variability in the impacts of climatic change at the global scale. Consequently, it is important that change detection investigations are conducted at the local scale. A very weak signal is detected in the trend of minimum temperature (+0.2°C/decade). River discharge trends show an increase in mean discharge (31 to 35%/decade) over the last decades. Between 54 and 74% of this increase is explained by the increase in precipitation. The maximum discharge also responds significantly to precipitation changes leading to a lengthened wet season and an increase in extreme rainfall events. Such trends can be linked with a likely increase in floods in Central Vietnam, which is important for future adaptation planning and management and flood preparedness in the region. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, observed changes of temperature, rainfall, and some extreme climate indices in Vietnam were investigated by using daily observations during the period 1961-2012. The observed data were collected from 80 meteorological stations for temperature, and from 170 stations for rainfall over the seven climatological sub-regions of Vietnam. Results show that there were insignificant differences between the trends of changes obtained from the 1961-2011 and 1979-2012 periods. Near-surface temperature, including mean (T2m), maximum (Tx) and minimum temperature (Tm), increased consistently at almost all stations. Tm increased faster than Tx. Temperature also increased faster in winter than in summer. Consequently, the number of hot days and warm nights increased whereas the number of cold days, cold nights and cool days decreased. In the northern regions, temperature tended to slightly decrease in May but significantly increased in June. Annual rainfall decreased in the northern area of Vietnam, while it increased at almost all stations in the central regions, and had insignificant trends in the southern sub-region. Changes in some extreme rainfall indices were likely consistent with changes in annual rainfall. Monthly rainfall in the central regions significantly increased from August to December. Rainfall generally increased in May and decreased in June over almost all country.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The susceptibility of a catchment to flooding is affected by its soil moisture prior to an extreme rainfall event. While soil moisture is routinely observed by satellite instruments, results from previous work on the assimilation of remotely sensed soil moisture into hydrologic models have been mixed. This may have been due in part to the low spatial resolution of the observations used. In this study, the remote sensing aspects of a project attempting to improve flow predictions from a distributed hydrologic model by assimilating soil moisture measurements are described. Advanced Synthetic Aperture Radar (ASAR) Wide Swath data were used to measure soil moisture as, unlike low resolution microwave data, they have sufficient resolution to allow soil moisture variations due to local topography to be detected, which may help to take into account the spatial heterogeneity of hydrological processes. Surface soil moisture content (SSMC) was measured over the catchments of the Severn and Avon rivers in the South West UK. To reduce the influence of vegetation, measurements were made only over homogeneous pixels of improved grassland determined from a land cover map. Radar backscatter was corrected for terrain variations and normalized to a common incidence angle. SSMC was calculated using change detection. To search for evidence of a topographic signal, the mean SSMC from improved grassland pixels on low slopes near rivers was compared to that on higher slopes. When the mean SSMC on low slopes was 30–90%, the higher slopes were slightly drier than the low slopes. The effect was reversed for lower SSMC values. It was also more pronounced during a drying event. These findings contribute to the scant information in the literature on the use of high resolution SAR soil moisture measurement to improve hydrologic models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainties in changes to the spatial distribution and magnitude of the heaviest extremes of daily monsoon rainfall over India are assessed in the doubled CO2 climate change scenarios in the IPCC Fourth Assessment Report. Results show diverse changes to the spatial pattern of the 95th and 99th subseasonal percentiles, which are strongly tied to the mean precipitation change during boreal summer. In some models, the projected increase in heaviest rainfall over India at CO2 doubling is entirely predictable based upon the surface warming and the Clausius–Clapeyron relation, a result which may depend upon the choice of convection scheme. Copyright © 2009 Royal Meteorological Society and Crown Copyright