2 resultados para exponential-logarithmic distribution
em CentAUR: Central Archive University of Reading - UK
Resumo:
Ensemble forecasting of nonlinear systems involves the use of a model to run forward a discrete ensemble (or set) of initial states. Data assimilation techniques tend to focus on estimating the true state of the system, even though model error limits the value of such efforts. This paper argues for choosing the initial ensemble in order to optimise forecasting performance rather than estimate the true state of the system. Density forecasting and choosing the initial ensemble are treated as one problem. Forecasting performance can be quantified by some scoring rule. In the case of the logarithmic scoring rule, theoretical arguments and empirical results are presented. It turns out that, if the underlying noise dominates model error, we can diagnose the noise spread.
Resumo:
Pardo, Patie, and Savov derived, under mild conditions, a Wiener-Hopf type factorization for the exponential functional of proper Lévy processes. In this paper, we extend this factorization by relaxing a finite moment assumption as well as by considering the exponential functional for killed Lévy processes. As a by-product, we derive some interesting fine distributional properties enjoyed by a large class of this random variable, such as the absolute continuity of its distribution and the smoothness, boundedness or complete monotonicity of its density. This type of results is then used to derive similar properties for the law of maxima and first passage time of some stable Lévy processes. Thus, for example, we show that for any stable process with $\rho\in(0,\frac{1}{\alpha}-1]$, where $\rho\in[0,1]$ is the positivity parameter and $\alpha$ is the stable index, then the first passage time has a bounded and non-increasing density on $\mathbb{R}_+$. We also generate many instances of integral or power series representations for the law of the exponential functional of Lévy processes with one or two-sided jumps. The proof of our main results requires different devices from the one developed by Pardo, Patie, Savov. It relies in particular on a generalization of a transform recently introduced by Chazal et al together with some extensions to killed Lévy process of Wiener-Hopf techniques. The factorizations developed here also allow for further applications which we only indicate here also allow for further applications which we only indicate here.