2 resultados para exact solutions
em CentAUR: Central Archive University of Reading - UK
Resumo:
A discrete-time random process is described, which can generate bursty sequences of events. A Bernoulli process, where the probability of an event occurring at time t is given by a fixed probability x, is modified to include a memory effect where the event probability is increased proportionally to the number of events that occurred within a given amount of time preceding t. For small values of x the interevent time distribution follows a power law with exponent −2−x. We consider a dynamic network where each node forms, and breaks connections according to this process. The value of x for each node depends on the fitness distribution, \rho(x), from which it is drawn; we find exact solutions for the expectation of the degree distribution for a variety of possible fitness distributions, and for both cases where the memory effect either is, or is not present. This work can potentially lead to methods to uncover hidden fitness distributions from fast changing, temporal network data, such as online social communications and fMRI scans.
Resumo:
Predicting the evolution of ice sheets requires numerical models able to accurately track the migration of ice sheet continental margins or grounding lines. We introduce a physically based moving point approach for the flow of ice sheets based on the conservation of local masses. This allows the ice sheet margins to be tracked explicitly and the waiting time behaviours to be modelled efficiently. A finite difference moving point scheme is derived and applied in a simplified context (continental radially-symmetrical shallow ice approximation). The scheme, which is inexpensive, is validated by comparing the results with moving-margin exact solutions and steady states. In both cases the scheme is able to track the position of the ice sheet margin with high precision.