100 resultados para evolutionary medicine
em CentAUR: Central Archive University of Reading - UK
Resumo:
University students suffer from variable sleep patterns including insomnia;[1] furthermore, the highest incidence of herbal use appears to be among college graduates.[2] Our objective was to test the perception of safety and value of herbal against conventional medicine for the treatment of insomnia in a non-pharmacy student population. We used an experimental design and bespoke vignettes that relayed the same effectiveness information to test our hypothesis that students would give higher ratings of safety and value to herbal product compared to conventional medicine. We tested another hypothesis that the addition of side-effect information would lower people’s perception of the safety and value of the herbal product to a greater extent than it would with the conventional medicine.
Resumo:
Orlistat is an effective weight-loss medicine, which will soon be available for purchase in pharmacies. We used a factorial experiment and found that informing people about the availability for purchase of this medicinal product previously only available on prescription resulted in higher ratings of perceived value and effectiveness compared to a natural health supplement even though we used the same statement about effectiveness. This positive perception of orlistat was not impaired by the provision of side-effect information. Orlistat will soon be available in pharmacies. Health professionals must act to prevent its misuse by those not overweight.
Resumo:
Many pathogens transmit to new hosts by both infection (horizontal transmission) and transfer to the infected host's offspring (vertical transmission). These two transmission modes require speci®c adap- tations of the pathogen that can be mutually exclusive, resulting in a trade-off between horizontal and vertical transmission. We show that in mathematical models such trade-offs can lead to the simultaneous existence of two evolutionary stable states (evolutionary bi-stability) of allocation of resources to the two modes of transmission. We also show that jumping between evolutionary stable states can be induced by gradual environmental changes. Using quantitative PCR-based estimates of abundance in seed and vege- tative parts, we show that the pathogen of wheat, Phaeosphaeria nodorum, has jumped between two distinct states of transmission mode twice in the past 160 years, which, based on published evidence, we interpret as adaptation to environmental change. The ®nding of evolutionary bi-stability has impli- cations for human, animal and other plant diseases. An ill-judged change in a disease control programme could cause the pathogen to evolve a new, and possibly more damaging, combination of transmission modes. Similarly, environmental changes can shift the balance between transmission modes, with adverse effects on human, animal and plant health.
Resumo:
1. The management of threatened species is an important practical way in which conservationists can intervene in the extinction process and reduce the loss of biodiversity. Understanding the causes of population declines (past, present and future) is pivotal to designing effective practical management. This is the declining-population paradigm identified by Caughley. 2. There are three broad classes of ecological tool used by conservationists to guide management decisions for threatened species: statistical models of habitat use, demographic models and behaviour-based models. Each of these is described here, illustrated with a case study and evaluated critically in terms of its practical application. 3. These tools are fundamentally different. Statistical models of habitat use and demographic models both use descriptions of patterns in abundance and demography, in relation to a range of factors, to inform management decisions. In contrast, behaviourbased models describe the evolutionary processes underlying these patterns, and derive such patterns from the strategies employed by individuals when competing for resources under a specific set of environmental conditions. 4. Statistical models of habitat use and demographic models have been used successfully to make management recommendations for declining populations. To do this, assumptions are made about population growth or vital rates that will apply when environmental conditions are restored, based on either past data collected under favourable environmental conditions or estimates of these parameters when the agent of decline is removed. As a result, they can only be used to make reliable quantitative predictions about future environments when a comparable environment has been experienced by the population of interest in the past. 5. Many future changes in the environment driven by management will not have been experienced by a population in the past. Under these circumstances, vital rates and their relationship with population density will change in the future in a way that is not predictable from past patterns. Reliable quantitative predictions about population-level responses then need to be based on an explicit consideration of the evolutionary processes operating at the individual level. 6. Synthesis and applications. It is argued that evolutionary theory underpins Caughley’s declining-population paradigm, and that it needs to become much more widely used within mainstream conservation biology. This will help conservationists examine critically the reliability of the tools they have traditionally used to aid management decision-making. It will also give them access to alternative tools, particularly when predictions are required for changes in the environment that have not been experienced by a population in the past.
Resumo:
The primary endosymbiotic bacteria from three species of parasitic primate lice were characterized molecularly. We have confirmed the characterization of the primary endosymbiont (P-endosymbiont) of the human head/body louse Pediculus humanus and provide new characterizations of the P-endosymbionts from Pediculus schaeffi from chimpanzees and Pthirus pubis, the pubic louse of humans. The endosymbionts show an average percent sequence divergence of 11 to 15% from the most closely related known bacterium "Candidatus Arsenophonus insecticola." We propose that two additional species be added to the genus "Candidatus Riesia." The new species proposed within "Candidatus Riesia" have sequence divergences of 3.4% and 10 to 12% based on uncorrected pairwise differences. Our Bayesian analysis shows that the branching pattern for the primary endosymbionts was the same as that for their louse hosts, suggesting a long coevolutionary history between primate lice and their primary endosymbionts. We used a calibration of 5.6 million years to date the divergence between endosymbionts from human and chimpanzee lice and estimated an evolutionary rate of nucleotide substitution of 0.67% per million years, which is 15 to 30 times faster than previous estimates calculated for Buchnera, the primary endosymbiont in aphids. Given the evidence for cospeciation with primate lice and the evidence for fast evolutionary rates, this lineage of endosymbiotic bacteria can be evaluated as a fast-evolving marker of both louse and primate evolutionary histories.
Resumo:
Increasingly, we regard the genome as a site and source of genetic conflict. This fascinating 'bottom-up' view brings up appealing connections between genome biology and whole-organism ecology, in which populations of elements compete with one another in their genomic habitat. Unlike other habitats, though, a host genome has its own evolutionary interests and is often able to defend itself against molecular parasites. Most well-studied organisms employ strategies to protect their genomes against the harmful effects of genomic parasites, including methylation, various pathways of RNA interference, and more unusual tricks such as repeat induced point-mutation (RIP). These genome defence systems are not obscure biological curiosities, but fundamentally important to the integrity and cohesion of the genome, and exert a powerful influence on genome evolution.
Resumo:
The evolutionary history of gains and losses of vegetative reproductive propagules (soredia) in Porpidia s.l., a group of lichen-forming ascomycetes, was clarified using Bayesian Markov chain Monte Carlo (MCMC) approaches to monophyly tests and a combined MCMC and maximum likelihood approach to ancestral character state reconstructions. The MCMC framework provided confidence estimates for the reconstructions of relationships and ancestral character states, which formed the basis for tests of evolutionary hypotheses. Monophyly tests rejected all hypotheses that predicted any clustering of reproductive modes in extant taxa. In addition, a nearest-neighbor statistic could not reject the hypothesis that the vegetative reproductive mode is randomly distributed throughout the group. These results show that transitions between presence and absence of the vegetative reproductive mode within Porpidia s.l. occurred several times and independently of each other. Likelihood reconstructions of ancestral character states at selected nodes suggest that - contrary to previous thought - the ancestor to Porpidia s.l. already possessed the vegetative reproductive mode. Furthermore, transition rates are reconstructed asymmetrically with the vegetative reproductive mode being gained at a much lower rate than it is lost. A cautious note has to be added, because a simulation study showed that the ancestral character state reconstructions were highly dependent on taxon sampling. However, our central conclusions, particularly the higher rate of change from vegetative reproductive mode present to absent than vice versa within Porpidia s.l., were found to be broadly independent of taxon sampling. [Ancestral character state reconstructions; Ascomycota, Bayesian inference; hypothesis testing; likelihood; MCMC; Porpidia; reproductive systems]
Resumo:
A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.