41 resultados para eusocial insects

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radar has been applied to the study of insect migration for almost 40 years, but most entomological radars operate at X-band (9.4 GHz, 3.2 cm wavelength), and can only detect individuals of relatively large species, such as migratory grasshoppers and noctuid moths, over all of their flight altitudes. Many insects (including economically important species) are much smaller than this, but development of the requisite higher power and/or higher frequency radar systems to detect these species is often prohibitively expensive. In this paper, attention is focussed upon the uses of some recently-deployed meteorological sensing devices to investigate insect migratory flight behaviour, and especially its interactions with boundary layer processes. Records were examined from the vertically-pointing 35 GHz ‘Copernicus’ and 94 GHz ‘Galileo’ cloud radars at Chilbolton (Hampshire, England) for 12 cloudless and convective occasions in summer 2003, and one of these occasions (13 July) is presented in detail. Insects were frequently found at heights above aerosol particles, which represent passive tracers, indicating active insect movement. It was found that insect flight above the convective boundary layer occurs most often during the morning. The maximum radar reflectivity (an indicator of aerial insect biomass) was found to be positively correlated with maximum screen temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applications of atmospheric science are relevant to a range of themes within science and society; application to entomology was the main focus of this meeting organised by Dr Curtis Wood (University of Reading). This meeting was held jointly with the Royal Entomological Society. The talks were designed to appeal to the broader scientific community by showcasing topics near the join of the two disciplines. The audience heard about exciting topics within weather and climate change, how they are applied to entomological science and how insects can be used to advance atmospheric science. The meeting included the 2009 Margary Lecture given by Prof. Philip Mellor from the Institute for Animal Health (IAH) at Pirbright.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect returns from the UK's Doppler weather radars were collected in the summers of 2007 and 2008, to ascertain their usefulness in providing information about boundary layer winds. Such observations could be assimilated into numerical weather prediction models to improve forecasts of convective showers before precipitation begins. Significant numbers of insect returns were observed during daylight hours on a number of days through this period, when they were detected at up to 30 km range from the radars, and up to 2 km above sea level. The range of detectable insect returns was found to vary with time of year and temperature. There was also a very weak correlation with wind speed and direction. Use of a dual-polarized radar revealed that the insects did not orient themselves at random, but showed distinct evidence of common orientation on several days, sometimes at an angle to their direction of travel. Observation minus model background residuals of wind profiles showed greater bias and standard deviation than that of other wind measurement types, which may be due to the insects' headings/airspeeds and to imperfect data extraction. The method used here, similar to the Met Office's procedure for extracting precipitation returns, requires further development as clutter contamination remained one of the largest error contributors. Wind observations derived from the insect returns would then be useful for data assimilation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic farming has often been found to provide benefits for biodiversity, but the benefits can depend on the species considered and characteristics of the surrounding landscape. In an intensively farmed area of Northeast Italy we investigated whether isolated organic farms, in a conventionally farmed landscape, provided local benefits for insect pollinators and pollination services. We quantified the relative effects of local management (i.e. the farm system), landscape management (proportion of surrounding uncultivated land) and interactions between them. We compared six organic and six conventional vine fields. The proportion of surrounding uncultivated land was calculated for each site at radii of 200, 500, 1000 and 2000 m. The organic fields did not differ from the conventional in their floral resources or proportion of surrounding uncultivated land. Data were collected on pollinator abundance and species richness, visitation rates to, and pollination of experimental potted plants. None of these factors were significantly affected by the farming system. The abundance of visits to the potted plants in the conventional fields tended to be negatively affected by the proportion of surrounding uncultivated land. The proportion fruit set, weight of seeds per plant and seed weight in conventional and organic fields were all negatively affected by the proportion of surrounding uncultivated land. In vine fields the impact of the surrounding landscape was stronger than the local management. Enhancement of biodiversity through organic farming should not be assumed to be ubiquitous, as potential benefits may be offset by the crop type, organicmanagement practices and the specific habitat requirements in the surrounding landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal (AM) fungi have a variety of effects on foliar-feeding insects, with the majority of these being positive, although reports of negative and null effects also exist. Virtually all previous experiments have used mobile insects confined in cages and have studied the effects of one, or at most two, species of mycorrhizae on one species of insect. The purpose of this study was to introduce a greater level of realism into insect-mycorrhizal experiments, by studying the responses of different insect feeding guilds to a variety of AM fungi. We conducted two experiments involving three species of relatively immobile insects (a leaf-mining and two seed-feeding flies) reared in natural conditions on a host (Leucanthemum vulgare). In a field study, natural levels of AM colonization were reduced, while in a phytometer trial, we experimentally colonized host plants with all possible combinations of three known mycorrhizal associates of L. vulgare. In general, AM fungi increased the stature (height and leaf number) and nitrogen content of plants. However, these effects changed through the season and were,dependent on the identity of the fungi in the root system. AM fungi increased host acceptance of all three insects and larval performance of the leaf miner, but these effects were also season- and AM species-dependent. We suggest that the mycorrhizal effect on the performance of the leaf miner is due to fungal-induced changes in host-plant nitrogen content, detected by the adult fly. However, variability in the effect was apparent, because not all AM species increased plant N content. Meanwhile, positive effects of mycorrhizae were found on flower number and flower size, and these appeared to result in enhanced infestation levels by the seed-feeding insects. The results show that AM fungi exhibit ecological specificity, in that different. species have different effects on host-plant growth and chemistry and the performance of foliar-feeding insects. Future studies need to conduct experiments that use ecologically realistic combinations of plants and fungi and allow insects to be reared in natural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summer droughts are predicted to increase in severity and frequency in the United Kingdom, due to climate change. Few studies have addressed the impacts of drought on interactions between species, and the majority have focussed on increases in CO2 concentration and changes in temperature. Here, the effect of experimental summer drought on the strength of the plant-mediated interaction between leaf-mining Stephensia brunnichella larvae and root-chewing Agriotes larvae was investigated. Agriotes larvae reduced the abundance and performance of S. brunnichella feeding on a mutual host plant, Clinopodium vulgare, as well as the rate of parasitism of the leaf-miner. The interaction did not, however, occur on plants subjected to a severe drought treatment, which were reduced in size. Changes to summer rainfall, due to climate change, may therefore reduce the occurrence of plant-mediated interactions between insect herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presumption that the synthesis of 'defence' compounds in plants must incur some 'trade-off' or penalty in terms of annual crop yields has been used to explain observed inverse correlations between resistance to herbivores and rates of growth or photosynthesis. An analysis of the cost of making secondary compounds suggests that this accounts for only a small part of the overall carbon budget of annual crop plants. Even the highest reported amounts of secondary metabolites found in different crop species (flavonoids, allylisothiocyanates, hydroxamic acids, 2-tridecanone) represent a carbon demand that can be satisfied by less than an hour's photosynthesis. Similar considerations apply to secondary compounds containing nitrogen or sulphur, which are unlikely to represent a major investment compared to the cost of making proteins, the major demand for these elements. Decreases in growth and photosynthesis in response to stress are more likely the result of programmed down-regulation. Observed correlations between yield and low contents of unpalatable or toxic compounds may be the result of parallel selection during the refinement of crop species by humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key concern for conservation biologists is whether populations of plants and animals are likely to fluctuate widely in number or remain relatively stable around some steady-state value. In our study of 634 populations of mammals, birds, fish and insects, we find that most can be expected to remain stable despite year to year fluctuations caused by environmental factors. Mean return rates were generally around one but were higher in insects (1.09 +/- 0.02 SE) and declined with body size in mammals. In general, this is good news for conservation, as stable populations are less likely to go extinct. However, the lower return rates of the large mammals may make them more vulnerable to extinction. Our estimates of return rates were generally well below the threshold for chaos, which makes it unlikely that chaotic dynamics occur in natural populations - one of ecology's key unanswered questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our conclusions are unaffected by removal of the time series identified by Peacock and Garshelis as harvest data. The relationship between a population's growth rate and its size is generally concave in mammals, irrespective of their body sizes. However, our data set includes quality data for only five mammals larger than 20 kilograms, so strong conclusions cannot be made about these animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technical comments by Getz and Lloyd-Smith, Ross, and Doncaster focus on specific aspects of our analysis and estimation and do not demonstrate any results opposing our key conclusion-that, contrary to what was previously believed, the relation between a population's growth rate (pgr) and its density is generally concave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key unresolved question in population ecology concerns the relationship between a population's size and its growth rate. We estimated this relationship for 1780 time series of mammals, birds, fish, and insects. We found that rates of population growth are high at low population densities but, contrary to previous predictions, decline rapidly with increasing population size and then flatten out, for all four taxa. This produces a strongly concave relationship between a population's growth rate and its size. These findings have fundamental implications for our understanding of animals' lives, suggesting in particular that many animals in these taxa will be found living at densities above the carrying capacity of their environments.

Relevância:

20.00% 20.00%

Publicador: