14 resultados para estrogen E2

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

While many physiological effects of estrogens (E) are due to regulation of gene transcription by liganded estrogen receptors (ERs), several effects are also mediated, at least in part, by rapid non-genomic actions of E. Though the relative importance of rapid versus genomic effects in the central nervous system is controversial, we showed previously that membrane-limited effects of E, initiated by an estradiol bovine serum albumin conjugate (E2-BSA), could potentiate transcriptional effects of 17beta-estradiol from an estrogen response element (ERE)-reporter in neuroblastoma cells. Here, using specific inhibitors and activators in a pharmacological approach, we show that activation of phosphatidylinositol-3-phosphate kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways, dependent on a Galphaq coupled receptor signaling are important in this transcriptional potentiation. We further demonstrate, using ERalpha phospho-deficient mutants, that E2-BSA mediated phosphorylation of ERalpha is one mechanism to potentiate transcription from an ERE reporter construct. This study provides a possible mechanism by which signaling from the membrane is coupled to transcription in the nucleus, providing an integrated view of hormone signaling in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the role of glycosylation of the envelope glycoprotein E2 of bovine viral diarrhoea virus (BVDV), produced in insect cells, in BVDV infection. When amino acids predicated to code for the C-terminal N-linked glycosylation site were mutated the resulting protein was less efficient than wild type protein at preventing infection of susceptible cells with BVDV. In addition, mutational analysis showed that a further two predicted N-terminal N-linked glycosylation sites of E2 are required for efficient production of recombinant protein. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Homocysteine and asymmetric dimethylarginine (ADMA) affect nitric oxide (NO) concentration, thereby contributing to cardiovascular disease (CVD). Both amino acids can be reduced in vivo by estrogen. Variation in the estrogen receptor (ER) may influence homocysteine and ADMA, yet no information is available on associations with single nucleotide polymorphisms in the estrogen receptor genes ER alpha (PvuII and XbaI) and ER beta (1730G -> A and cx+56 G -> A). Objective To find relationships between common polymorphisms associated with cardiovascular disease and cardiovascular risk factors homocysteine and ADMA. Methods In a cross-sectional study with healthy postmenopausal women (n = 89), homocysteine, ADMA, nitric oxide metabolites (NOx), plasma folate and ER alpha and beta polymorphisms ER alpha PvuII, ER alpha XbaI; ER beta 1730G -> A (AluI), ER beta cx+56 G -> A (Tsp5091) were analyzed. Results Women who are homozygotic for ER beta cx+56 G -> A A/A exhibited higher homocysteine (p = 0.012) and NOx (p = 0.056) levels than wildtype or heterozygotes. NOx concentration was also significantly affected by ER beta 1730 G -> A polymorphism (p = 0.025). The ER beta (p < 0.001) and ER alpha (p < 0.001) polymorphisms were in linkage disequilibrium. Conclusions Women who are homozygotic for ER beta cx+S6 G -> A A/A may be at increased risk for cardiovascular disease due to higher homocysteine levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The hypocholesterolemic effects of soy foods are well established, and it has been suggested that isoflavones are responsible for this effect. However, beneficial effects of isolated isoflavones on lipid biomarkers of cardiovascular disease risk have not yet been shown. Objective: The objective was to investigate the effects of isolated soy isoflavones on metabolic biomarkers of cardiovascular disease risk, including plasma total, HDL, and LDL cholesterol; triacylglycerols; lipoprotein(a); the percentage of small dense LDL; glucose; nonesterified fatty acids; insulin; and the homeostasis model assessment of insulin resistance. Differences with respect to single nucleotide polymorphisms in selected genes [ie, estrogen receptor a (Xbal and PvuII), estrogen receptor beta (AluI), and estrogen receptor beta(cx) (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), cholesteryl ester transfer protein (TaqIB), and leptin receptor (Gln223Arg)] and with respect to equol production were investigated. Design: Healthy postmenopausal women (n = 117) participated in a randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2: 1; 50 mg/d) or placebo cereal bars were consumed for 8 wk, with a wash-out period of 8 wk before the crossover. Results: Isoflavones did not have a significant beneficial effect on plasma concentrations of lipids, glucose, or insulin. A significant difference between the responses of HDL cholesterol to isoflavones and to placebo was found with estrogen receptor 0(cx) Tsp5091 genotype AA, but not GG or GA. Conclusions: Isoflavone supplementation, when provided in the form and dose used in this study, had no effect on lipid or other metabolic biomarkers of cardiovascular disease risk in postmenopausal women but may increase HDL cholesterol in an estrogen receptor P gene-polymorphic subgroup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dietary isoflavones are thought to be cardioprotective because of their structural similarity to estrogen. The reduction of concentrations of circulating inflammatory markers by estrogen may be one of the mechanisms by which premenopausal women are protected against cardiovascular disease. Objective: Our aim was to investigate the effects of isolated soy isoflavones on inflammatory biomarkers [von Willebrand factor, intracellular adhesion molecule 1, vascular cell adhesion molecule 1 (VCAM-1), E-selectin, monocyte chemoattractant protein 1, C-reactive protein (CRP), and endothelin 1 concentrations]. Differences with respect to single-nucleotide polymorphisms in selected genes [estrogen receptor alpha (XbaI and PvuII), estrogen receptor beta [ER beta (AluI) and ER beta[cx] (Tsp5091), endothelial nitric oxide synthase (Glu298Asp), apolipoprotein E (Apo E2, E3, and E4), and cholesteryl ester transfer protein (TaqIB)] and equol production were investigated. Design: One hundred seventeen healthy European postmenopausal women participated in this randomized, double-blind, placebo-controlled, crossover dietary intervention trial. Isoflavone-enriched (genistein-to-daidzein ratio of 2:1;50 mg/d) or placebo cereal bars were consumed for 8 wk, with a washout period of 8 wk between the crossover. Plasma inflammatory factors were measured at 0 and 8 wk of each study arm. Results: Isoflavones improved CRP concentrations [odds ratio (95% Cl) for CRP values >1 mg/L for isoflavone compared with placebo: 0.43 (0.27, 0.69)]; no significant effects of isoflavone treatment on other plasma inflammatory markers were observed. No significant differences in the response to isoflavones were observed according to subgroups of equol production. Differences in the VCAM-1 response to isoflavones and to placebo were found with ER beta AluI genotypes. Conclusion: Isoflavones have beneficial effects on CRP concentrations, but not on other inflammatory biomarkers of cardiovascular disease risk in postmenopausal women, and may improve VCAM-1 in an ER beta gene polymorphic subgroup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen which is closely related to Hepatitis C virus. Of the structural proteins, the envelope glycoprotein E2 of BVDV is the major antigen which induces neutralizing antibodies; thus, BVDV E2 is considered as an ideal target for use in subunit vaccines. Here, the expression, purification of wild-type and mutant forms of the ectodomain of BVDV E2 and subsequent crystallization and data collection of two crystal forms grown at low and neutral pH are reported. Native and multiple-wavelength anomalous dispersion (MAD) data sets have been collected and structure determination is in progress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13 bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2),which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-�) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ER� antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2. The TRs have been shown to interfere with ER-mediated transcription from both the consensus estrogen response element (ERE) and the rat preproenkephalin (PPE) promoter, possibly by competing with ER binding to the ERE or by squelching coactivators essential for ER-mediated transcription. The rat oxytocin receptor (OTR) gene is thought to be involved in several facets of reproductive and affiliative behaviors. 17beta-Estradiol-bound ERs upregulate the OTR gene in the ventromedial hypothalamus, a region critical for the induction of lordosis behavior in several species. We investigated the effects of the ligand-binding TR isoforms on the ER-mediated transcription from a physiological promoter of a behaviorally relevant gene such as the OTR. Only ERalpha could induce the OTR gene in two cell lines tested, the CV-1 and the SK-N-BE2C neuroblastoma cell lines. ERbeta was incapable of inducing the gene in either cell line. ERalpha is therefore not equivalent to ERbeta on this physiological promoter. Indeed, in the neural cell line, ERbeta can inhibit ERalpha-mediated induction from the OTR promoter. While the TRalpha1 isoform inhibited ERalpha-mediated induction in the neural cell line, the TRbeta1 isoform stimulated induction, thus demonstrating isoform specificity in the interaction. The use of a DNA-binding mutant, the TR P box mutant, showed that inhibition of ERalpha-mediated induction of the rat OTR gene promoter by the TRalpha1 isoform does not require DNA-binding ability. SRC-1 overexpression relieved TRalpha1-mediated inhibition in both cell lines, suggesting that squelching for coactivators is an important molecular mechanism in TRalpha-mediated inhibition. Such interactions between TR and ER isoforms on the rat OTR promoter provide a mechanism to achieve neuroendocrine integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crosstalk between nuclear receptors is important for conversion of external and internal stimuli to a physiologically meaningful response by cells. Previous studies from this laboratory have demonstrated crosstalk between the estrogen (ER) and thyroid hormone receptors (TR) on two estrogen responsive physiological promoters, the preproenkephalin and oxytocin receptor gene promoter. Since ERa and ERb are isoforms possessing overlapping and distinct transactivation properties, we hypothesized that the interaction of ERa and b with the various TR isoforms would not be equivalent. To explore this hypothesis, the consensus estrogen response element (ERE)derived from the Xenopus vitellogenin gene is used to investigate the differences in interaction between ERa and b isoforms and the different TR isoforms in fibroblast cells. Both the ER isoforms transactivate from the consensus ERE, though ERa transactivates to a greater extent than ERb. Although neither of the TRb isoforms have an effect on ERa transactivation from the consensus ERE, the liganded TRa1 inhibits the ERa transactivation from the consensus ERE. In contrast, the liganded TRa1 facilitates ERb-mediated transactivation. The crosstalk between the TRb isoforms with the ERa isoform, on the consensus ERE, is different from that with the ERb isoform. The use of a TRa1 mutant, which is unable to bind DNA, abolishes the ability of the TRa1 isoform to interact with either of the ER isoforms. These differences in nuclear receptor crosstalk reveal an important functional difference between isoforms, which provides a novel mechanism for neuroendocrine integration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of thyroid hormone on estrogen actions has been demonstrated both in vivo and in vitro. In transient transfection assays, the effects of liganded thyroid hormone receptors (TR) on transcriptional facilitation by estrogens bound to estrogen receptors (ER) display specificity according to the following: 1) ER isoform, 2) TR isoform, 3) the promoter through which transcriptional facilitation occurs, and 4) cell type. Some of these molecular phenomena may be related to thyroid hormone signaling of seasonal limitations upon reproduction. The various combinations of these molecular interactions provide multiple and flexible opportunities for relations between two major hormonal systems important for neuroendocrine feedbacks and reproductive behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyroid hormones (T) and estrogens (E) are nuclear receptor ligands with at least two molecular mechanisms of action: (i) relatively slow genomic effects, such as the regulation of transcription by cognate T receptors (TR) and E receptors (ER); and (ii) relatively rapid nongenomic effects, such as kinase activation and calcium release initiated at the membrane by putative membrane receptors. Genomic and nongenomic effects were thought to be disparate and independent. However, in a previous study using a two-pulse paradigm in neuroblastoma cells, we showed that E acting at the membrane could potentiate transcription from an E-driven reporter gene in the nucleus. Because both T and E can have important effects on mood and cognition, it is possible that the two hormones can act synergistically. In this study, we demonstrate that early actions of T via TRalpha1 and TRbeta1 can potentiate E-mediated transcription (genomic effects) from a consensus E response element (ERE)-driven reporter gene in transiently transfected neuroblastoma cells. Such potentiation was reduced by inhibition of mitogen-activated protein kinase. Using phosphomutants of ERalpha, we also show that probable mitogen-activated protein kinase phosphorylation sites on the ERalpha, the serines at position 167 and 118, are important in TRbeta1-mediated potentiation of ERalpha-induced transactivation. We suggest that crosstalk between T and E includes potential interactions through both nuclear and membrane-initiated molecular mechanisms of hormone signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation of the serine residues in estrogen receptor (ER) α is important in transcriptional activation. Hence, methods to detect such posttranslational modifi cation events are valuable. We describe, in detail, the analysis of the phosphorylated ERα by electrophoretic separation of proteins and subsequent immuno-blotting techniques. In particular, phosphorylation of the ERα is one possible outcome of activation of the putative membrane estrogen receptor (mER), GPR30. Hence, phosphorylation represents a cross talk event between GPR30 and ERα and may be important in estrogen-regulated physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13 bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-�) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ER� antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the cognate elements.