50 resultados para enzyme marker
em CentAUR: Central Archive University of Reading - UK
Resumo:
Activated neutrophils generate the potent oxidant hypochlorous acid (HOCl) from the enzyme myeloperoxidase (MPO). A proposed bio-marker for MPO-derived HOCl in vivo is 3-chlorotyrosine, elevated levels of which have been measured in several human inflammatory pathologies. However, it is unlikely that HOCl is produced as the sole oxidant at sites of chronic inflammation as other reactive species are also produced during the inflammatory response. The work presented shows that free and protein bound 3-chlorotyrosine is lost upon addition of the pro-inflammatory oxidants, HOCl, peroxynitrite, and acidified nitrite. Furthermore, incubation of 3-chlorotyrosine with activated RAW264.7 macrophages or neutrophil-like HL-60 cells resulted in significant loss of 3-chlorotyrosine. Therefore, at sites of chronic inflammation where there is concomitant ONOO- and HOCl formation, it is possible measurement of 3-chlorotyrosine may represent an underestimate of the true extent of tyrosine chlorination. This finding could account for some of the discrepancies reported between 3-chlorotyrosine levels in tissues in the literature. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.
Resumo:
A series of in vitro experiments was carried out to examine the impact of enzyme application rate and incubation medium pH on the rate and extent of fermentation of alfalfa stems. In Experiment 1, a commercial enzyme product (Liquicell 2500, Specialty Enzyme and Biochemicals, Fresno, CA, USA) was added to alfalfa stems at six levels: 0, 0.51, 1.02, 2.55, 5.1, and 25.5 mu l/g (control and L1-L5, respectively) to forage DM in a completely randomized design, with a factorial arrangement of treatments. Rate and extent of fermentation and apparent organic matter degradation (OMD) were determined in vitro, using a gas production technique. Addition of enzyme linearly increased (P < 0.01) gas production for up to 12 h (68.9, 70.9, 67.6, 67.9, 71.9, and 74.9 ml/g OM for control, L1-L5, respectively) and OMD for up to 19 h incubation (0.425, 0.444, 0.433, 0.446, 0.443, and 0.451 for control, L1-L5, respectively), but no increases (P > 0.05) were detected thereafter. In Experiment 2, the effect of the same enzyme as used previously (added at 0.51 mu l/g forage DM, directly into the incubation medium), and buffer pH were examined using the ANKOM system, in a completely randomized design. Incubation medium pH was altered using 1 M citric acid, in order to obtain target initial pH values of 6.8 (control, no citric acid added), 6.2, 5.8, and 5.4. Actual initial pH values achieved were 6.72, 6.50, 6.20, and 5.72. Lowering the pH decreased (P < 0.01) dry matter disappearance (DMD) at 18 h incubation (0.339, 0.341, 0.314, and 0.291 for 6.72, 6.50, 6.20, and 5.72, respectively), whereas enzyme addition increased (P < 0.05) DMD at 24 h (0.363 versus 0.387 for control and enzyme-treated, respectively). Addition of enzyme increased (P < 0.05) neutral detergent fibre (NDF), acid detergent fibre (ADF), and hemicellulose (HC) degradation at pH 6.50 (0.077 versus 0.117; 0.020 versus 0.051; 0.217 versus 0.270 for control and enzyme-treated NDF, ADF and hemicellulose degradation, respectively) and 6.72 (0.091 versus 0.134; 0.041 versus 0.079; 0.205 versus 0.261 for control and enzyme-treated NDF, ADF and HC degradation, respectively). It is concluded that the positive effects of this enzyme product were independent of the pre-treatment period, but pH influenced the responses to enzyme supplementation. Under the conditions of this experiment, exogenous fibrolytic enzymes seemed to work better at close to neutrality ruminal pH conditions. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.
Resumo:
Four multiparous cows with cannulas in the rumen and proximal duodenum were used in early lactation in a 4 x 4 Latin square experiment to investigate the effect of method of application of a fibrolytic enzyme product on digestive processes and milk production. The cows were given ad libitum a total mixed ration (TMR) composed of 57% (dry matter basis) forage (3:1 corn silage:grass silage) and 43% concentrates. The TMR contained (g/kg dry matter): 274 neutral detergent fiber, 295 starch, 180 crude protein. Treatments were TMR alone or TMR with the enzyme product added (2 kg/1000 kg TMR dry matter) either sprayed on the TMR 1 h before the morning feed (TMR-E), sprayed only on the concentrate the day before feeding (Concs-E), or infused into the rumen for 14 h/d (Rumen-E). There Was no significant effect on either feed intake or milk yield but both were highest on TMR-E. Rumen digestibility of dry matter, organic matter, and starch was unaffected by the enzyme. Digestibility of NDF was lowest on TMR-E in the rumen but highest postruminally. Total Tract digestibility was highest on TMR-E for dry matter, organic matter, and starch but treatment differences were nonsignificant for neutral detergent fiber: Corn silage stover retention time in the rumen was reduced by all enzyme treatments but postruminal transit time vas increased so the decline in total tract retention. time with enzymes was not significant. It is suggested that the tendency for enzymes to reduce particle retention time in the rumen may, by reducing the time available for fibrolysis to occur, at least partly explain the variability in the reported responses to enzyme treatment.
Resumo:
Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using a wholly recombinant system, we have investigated the ability of each virus receptor-binding protein, spike or S protein, to bind to ACE-2 in solution and on the cell surface. In both assays, we find that the NL63 S protein has a weaker interaction with ACE-2 than the SARS-CoV S protein, particularly in solution binding, but the residues required for contact are similar. We also confirm that the ACE-2-binding site of NL63 S lies between residues 190 and 739. A lower-affinity interaction with ACE-2 might partly explain the different pathological consequences of infection by SARS-CoV and NL63.
Resumo:
The tagged microarray marker (TAM) method allows high-throughput differentiation between predicted alternative PCR products. Typically, the method is used as a molecular marker approach to determining the allelic states of single nucleotide polymorphisms (SNPs) or insertion-deletion (indel) alleles at genomic loci in multiple individuals. Biotin-labeled PCR products are spotted, unpurified, onto a streptavidin-coated glass slide and the alternative products are differentiated by hybridization to fluorescent detector oligonucleotides that recognize corresponding allele-specific tags on the PCR primers. The main attractions of this method are its high throughput (thousands of PCRs are analyzed per slide), flexibility of scoring (any combination, from a single marker in thousands of samples to thousands of markers in a single sample, can be analyzed) and flexibility of scale (any experimental scale, from a small lab setting up to a large project). This protocol describes an experiment involving 3,072 PCRs scored on a slide. The whole process from the start of PCR setup to receiving the data spreadsheet takes 2 d.
Resumo:
The most popular retrotransposon-based molecular marker system in use at the present time is the sequence-specific amplification polymorphism (SSAP) system . This system exploits the insertional polymorphism of long terminal repeat (LTR) retrotransposons around the genome. Because the LTR sequence is used to design primers for this method, its successful application requires sequence information from the terminal region of the mobile elements . In this study, two LTR sequences were isolated from the cashew genome and used successfully to develop SSAP marker systems. These were shown to have higher levels of polymorphism than amplified fragment length polymorphic markers for this species.