23 resultados para enzymatic assays

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The location of extracellular enzymes within the soil architecture and their association with the various soil components affects their catalytic potential. A soil fractionation study was carried out to investigate: (a) the distribution of a range of hydrolytic enzymes involved in C, N and P transformations, (b) the effect of the location on their respective kinetics, (c) the effect of long-term N fertilizer management on enzyme distribution and kinetic parameters. Soil (silty clay loam) from grassland which had received 0 or 200 kg N ha(-1) yr(-1) was fractionated, and four particle-size fractions (> 200, 200-63, 63-2 and 0. 1-2 mum) were obtained by a combination of wet-sieving and centrifugation, after low-energy ultrasonication. All fractions were assayed for four carbohydrases (beta-cellobiohydrolase, N-acetyl-beta-glucosammidase, beta-glucosidase and beta-xylosidase), acid phosphatase and leucine-aminopeptidase using a microplate fluorimetric assay based on MUB-substrates. Enzyme kinetics (V-max and K-m) were estimated in three particle-size fractions and the unfractionated soil. The results showed that not all particle-size fractions were equally enzymatically active and that the distribution of enzymes between fractions depended on the enzyme. Carbohydrases predominated in the coarser fractions while phosphatase and leucine-aminopeptidase were predominant in the clay-size fraction. The Michaelis constant (K.) varied among fractions, indicating that the association of the same enzyme with different particle-size fractions affected its substrate affinity. The same values of Km were found in the same fractions from the soil under two contrasting fertilizer management regimes, indicating that the Michaelis constant was unaffected by soil changes caused by N fertilizer management. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Study was designed to investigate impact of tannins on in vitro ruminal fermentation parameters as well as relationships between concentration and in vitro biological activity of tannins present in tree fruits. Dry and mature fruits of known phenolic content harvested from Acacia nilotica, A. erubescens, A. erioloba, A. sieberiana, Piliostigima thonningii and Dichrostachys cinerea tree species were fermented with rumen fluid in vitro with or without polyethylene glycol (PEG). Correlation between in vitro biological activity and phenolic concentration was determined. Polyethylene glycol inclusion increased Cumulative gas production from all fruit substrates. The largest Increase (225%) after 48 h incubation was observed in D. cinerea fruits while the least (12.7%) increase was observed in A. erubescens fruits. Organic matter degradability (48 h) was increased by PEG inclusion for all tree species except A. erubescens and P. thonningii. For D. cinerea fruits, colorimetric assays were poorly correlated to Increases In gas production due to PEG treatment. Ytterbium precipitable phenolics (YbPh) were also poorly correlated with response to PEG for A. erioloba and P. thonningii fruits. However, YbPh were strongly and positively correlated to the increase In Cumulative gas production due to PEG for A. erubescens and A. nilotica. Folin-Ciocalteau assayed phenolics (SPh) were not correlated to response to PEG in P. thonningii and A. sieberiana. It was Concluded that the PEG effect oil in vitro fermentation was closely related to some measures of phenolic concentration but the relationships varied with tree species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feed samples received by commercial analytical laboratories are often undefined or mixed varieties of forages, originate from various agronomic or geographical areas of the world, are mixtures (e.g., total mixed rations) and are often described incompletely or not at all. Six unified single equation approaches to predict the metabolizable energy (ME) value of feeds determined in sheep fed at maintenance ME intake were evaluated utilizing 78 individual feeds representing 17 different forages, grains, protein meals and by-product feedstuffs. The predictive approaches evaluated were two each from National Research Council [National Research Council (NRC), Nutrient Requirements of Dairy Cattle, seventh revised ed. National Academy Press, Washington, DC, USA, 2001], University of California at Davis (UC Davis) and ADAS (Stratford, UK). Slopes and intercepts for the two ADAS approaches that utilized in vitro digestibility of organic matter and either measured gross energy (GE), or a prediction of GE from component assays, and one UC Davis approach, based upon in vitro gas production and some component assays, differed from both unity and zero, respectively, while this was not the case for the two NRC and one UC Davis approach. However, within these latter three approaches, the goodness of fit (r(2)) increased from the NRC approach utilizing lignin (0.61) to the NRC approach utilizing 48 h in vitro digestion of neutral detergent fibre (NDF:0.72) and to the UC Davis approach utilizing a 30 h in vitro digestion of NDF (0.84). The reason for the difference between the precision of the NRC procedures was the failure of assayed lignin values to accurately predict 48 h in vitro digestion of NDF. However, differences among the six predictive approaches in the number of supporting assays, and their costs, as well as that the NRC approach is actually three related equations requiring categorical description of feeds (making them unsuitable for mixed feeds) while the ADAS and UC Davis approaches are single equations, suggests that the procedure of choice will vary dependent Upon local conditions, specific objectives and the feedstuffs to be evaluated. In contrast to the evaluation of the procedures among feedstuffs, no procedure was able to consistently discriminate the ME values of individual feeds within feedstuffs determined in vivo, suggesting that the quest for an accurate and precise ME predictive approach among and within feeds, may remain to be identified. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper concerns the design and analysis of serial dilution assays to estimate the infectivity of a sample of tissue when it is assumed that the sample contains a finite number of indivisible infectious units such that a subsample will be infectious if it contains one or more of these units. The aim of the study is to estimate the number of infectious units in the original sample. The standard approach to the analysis of data from such a study is based on the assumption of independence of aliquots both at the same dilution level and at different dilution levels, so that the numbers of infectious units in the aliquots follow independent Poisson distributions. An alternative approach is based on calculation of the expected value of the total number of samples tested that are not infectious. We derive the likelihood for the data on the basis of the discrete number of infectious units, enabling calculation of the maximum likelihood estimate and likelihood-based confidence intervals. We use the exact probabilities that are obtained to compare the maximum likelihood estimate with those given by the other methods in terms of bias and standard error and to compare the coverage of the confidence intervals. We show that the methods have very similar properties and conclude that for practical use the method that is based on the Poisson assumption is to be recommended, since it can be implemented by using standard statistical software. Finally we consider the design of serial dilution assays, concluding that it is important that neither the dilution factor nor the number of samples that remain untested should be too large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of phosphoinositide (PI) 3-kinase activities has been linked to many normal and disease-related processes, including cell survival, cell growth and proliferation, cell differentiation, cell motility, and intracellular vesicle trafficking. However, as the family of enzymes has now grown to include eight true members, in three functional classes, plus several related protein kinases that are also inhibited by the widely used PI 3-kinase selective inhibitors, wortmannin and LY294002, extended methodologies are required to identify which type of kinase is involved in a particular cellular process, or protein complex, under study. A robust in vitro PI 3-kinase assay, suitable for use with immunoprecipitates, or purified proteins, is described here together with a series of modifications of substrate and assay conditions that will aid researchers in the identification of the particular class and isoform of PI 3-kinase that is involved in a signaling process under investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf blotch, caused by Rhynchosporium secalis, was studied in a range of winter barley cultivars using a combination of traditional plant pathological techniques and newly developed multiplex and real-time polymerase chain reaction (PCR) assays. Using PCR, symptomless leaf blotch colonization was shown to occur throughout the growing season in the resistant winter barley cv. Leonie. The dynamics of colonization throughout the growing season were similar in both Leonie and Vertige, a susceptible cultivar. However, pathogen DNA levels were approximately 10-fold higher in the susceptible cultivar, which expressed symptoms throughout the growing season. Visual assessments and PCR also were used to determine levels of R. secalis colonization and infection in samples from a field experiment used to test a range of winter barley cultivars with different levels of leaf blotch resistance. The correlation between the PCR and visual assessment data was better at higher infection levels (R(2) = 0.81 for leaf samples with >0.3% disease). Although resistance ratings did not correlate well with levels of disease for all cultivars tested, low levels of infection were observed in the cultivar with the highest resistance rating and high levels of infection in the cultivar with the lowest resistance rating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carboncarbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary alpha-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary alpha-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type 11 ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl) phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18 02 atmosphere were performed. One atom of 180, was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary a-carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to test the feasibility of integrating in situ, single species exposures and biomarker analysis into microcosm studies. Experimental ponds were dosed with pirimiphos methyl (PM) and lindane. C. riparius fourth instar larvae were deployed for 48 h on nine separate occasions during the study period before and after treatment. Surviving larvae were analysed for acetylcholinesterase activity (AChE). Survival and biomarker data were compared to chironomid assemblage analysis by monitoring insects emerging from the microcosms. Survival of chironomids within the in situ systems commenced on day + 16 after treatment with 31.6% and 53.3% survival in the lindane and PM treated ponds, respectively. In contrast, the first emergence from the microcosms occurred on days + 27, in respect to lindane, and + 59 for the PM treated ponds. Thus the in situ bioassay was able to demonstrate gradual reduction in toxicity within the sediment before this was evident from macroinvertebrate monitoring. Significant ACNE inhibition was only detected on exposure to PM. Levels decreased from 75% on day + 16 to 26% by day +29. The biomarker analysis confirmed that, by the end of the study, the insecticide was no longer exerting an effect. We discuss how the use of in situ bioassays could also aid comparison of microcosm studies by adding a standardized dimension. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims: Epidemiological evidence indicates that cereal dietary fibre (DF) may have several cardiovascular health benefits. The underlying mechanisms have not yet been elucidated. Here, the potential nutritional effects of physico-chemical. properties modifications of durum wheat dietary fibre (DWF) induced by enzyme treatment have been investigated. Methods and results: The conversion of the highly polymerised insoluble dietary fibre into soluble feruloyl oligosaccharides of DWF was achieved by a tailored enzymatic treatment. The in vitro fermentation and release of ferulic acid by intestinal microbiota from DWF before and after the enzymatic treatment were assessed using a gut model validated to mimic the human colonic microbial environment. Results demonstrated that, compared to DWF, the enzyme-treated DWF (ETD-WF) stimulated the growth of bifidobacteria and lactobacilli. Concurrently, the release of free ferulic acid by ET-DWF was almost three times higher respect to the control. No effect on the formation of short chain fatty acids was observed. Conclusions: The conversion of insoluble dietary fibre from cereals into soluble dietary fibre generated a gut microbial fermentation that supported bifidobacteria and lactobacilli. The concurrent increase in free ferulic acid from the enzyme-treated DWF might result in a higher plasma ferulic acid concentration which could be one of the reasons for the health benefits reported for dietary fibre in cardiovascular diseases. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Galactooligosaccharides are selectively fermented by the beneficial member of the colonic microflora contributing to the health of the host. Objective: We assessed the prebiotic potential of a novel galactooligosaccharide produced through the action of beta-galactosidases, originating from a probiotic Bifidobacterium bifidum strain, against a galactooligosaccharide produced through the action of an industrial P-galactosidase and a placebo. Design: Fifty-nine healthy human volunteers participated in this study. Initially, the effect of the matrix on the prebiotic properties of a commercially available galactooligosaccharide (7 g/d) was assessed during 7-d treatment periods with a 7-d washout period in between. During the second phase, 30 volunteers were assigned to a sequence of treatments (7 d) differing in the amount of the novel galactooligosaccharide (0, 3.6, or 7 g/d). Stools were recovered before and after each intervention, and bacteria numbers were determined by fluorescent in situ hybridization. Results: Addition of the novel galactooligosaccharide mixture significantly increased the bifidobacterial population ratio compared with the placebo (P < 0.05), whereas 7 g/d of the novel galactooligosaccharide significantly increased the bifidobacterial ratio compared with the commercial galactooligosaccharide (P < 0.05). Moreover, a significant relation (P < 0.001) between the bifidobacteria proportion and the novel galactooligosaccharide dose (0, 3.6, and 7 g/d) was observed. This relation was similar to the effect of the novel galactooligosaccharide on the prebiotic index of each dose. Conclusions: This study showed that galactooligosaccharide mixtures produced with different beta-galactosidases show different prebiotic properties and that, by using enzymes originating from bifidobacterial species, an increase in the bifidogenic properties of the prebiotic product is achievable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Low efficacy partial agonists at the D-2 dopamine receptor may be useful for treating schizophrenia. In this report we describe a method for assessing the efficacy of these compounds based on stimulation of [S-35]GTP gamma S binding. Experimental approach: Agonist efficacy was assessed from [S-35]GTP gamma S binding to membranes of CHO cells expressing D2 dopamine receptors in buffers with and without Na+. Effects of Na+ on receptor/G protein coupling were assessed using agonist/[H-3] spiperone competition binding assays. Key results: When [S-35]GTP gamma S binding assays were performed in buffers containing Na+, some agonists (aripiprazole, AJ-76, UH-232) exhibited very low efficacy whereas other agonists exhibited measurable efficacy. When Na+ was substituted by N-methyl D-glucamine, the efficacy of all agonists increased (relative to that of dopamine) but particularly for aripiprazole, aplindore, AJ-76, (-)-3-PPP and UH-232. In ligand binding assays, substitution of Na+ by N-methyl D-glucamine increased receptor/G protein coupling for some agonists -. aplindore, dopamine and (-)-3-PPP-but for aripiprazole, AJ-76 and UH-232 there was little effect on receptor/G protein coupling. Conclusions and implications: Substitution of Na+ by NMDG increases sensitivity in [S-35] GTPgS binding assays so that very low efficacy agonists were detected clearly. For some agonists the effect seems to be mediated via enhanced receptor/G protein coupling whereas for others the effect is mediated at another point in the G protein activation cycle. AJ-76, aripiprazole and UH-232 seem particularly sensitive to this change in assay conditions. This work provides a new method to discover these very low efficacy agonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall aim of this work was to characterize the major angiotensin converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of whey proteins, through the application of a novel integrative process. This process consisted of the combination of adsorption and microfiltration within a stirred cell unit for the selective immobilization of β-lactoglobulin and casein derived peptides (CDP) from whey. The adsorbed proteins were hydrolyzed in-situ which resulted in the separation of peptide products from the substrate and fractionation of peptides. Two different hydrolysates were produced: (i) from CDP (IC50 =287μg/mL) and (ii) from β-lactoglobulin (IC50=128μg/mL). IC50 is the concentration of inhibitor needed to inhibit ACE by half. The well known antihypertensive peptide IPP and several novel peptides that have structural similarities with reported ACE inhibitory peptides were identified and characterized in both hydrolysates. Furthermore, the hydrolysates were assessed for bitterness. No significant difference was found between the control (milk with no hydrolysate) and hydrolysate samples at different concentrations (at, below and above the IC50).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia fergusonii has been associated with a wide variety of intestinal and extra-intestinal infections in both humans and animals but, despite strong circumstantial evidence, the degree to which the organism is responsible for the pathologies identified remains uncertain. Thirty isolates of E fergusonii collected between 2003 and 2004 were screened using an Escherichia coli virulence gene array to test for the presence of homologous virulence genes in E. fergusonii. The iss (increased serum survival) gene was present in 13/30 (43%) of the test strains and the prfB (P-related fimbriae regulatory) and ireA (siderophore receptor IreA) genes were also detected jointly in 3/30 (10%) strains. No known virulence genes were detected in 14/30 (47%) of strains. Following confirmatory PCR and sequence analysis, the E. fergusonii prfB, iss and ireA genes shared a high degree of sequence similarity to their counterparts in E. coli, and a particular resemblance was noted with the E. coli strain APEC O1 pathogenicity island. In tissue culture adherence assays, nine E. fergusonii isolates associated with HEp-2 cells with a 'localised adherence' or 'diffuse adherence' phenotype, and they proved to be moderately invasive. The E fergusonii isolates in this study possess both some phenotypic and genotypic features linked to known pathotypes of E coli, and support existing evidence that strains of E fergusonii may act as an opportunistic pathogens, although their specific virulence factors may need to be explored. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen sulfide (H(2)S) has recently been proposed as an endogenous mediator of inflammation and is present in human synovial fluid. This study determined whether primary human articular chondrocytes (HACs) and mesenchymal progenitor cells (MPCs) could synthesize H(2)S in response to pro-inflammatory cytokines relevant to human arthropathies, and to determine the cellular responses to endogenous and pharmacological H(2)S. HACs and MPCs were exposed to IL-1β, IL-6, TNF-α and lipopolysaccharide (LPS). The expression and enzymatic activity of the H(2)S synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) were determined by Western blot and zinc-trap spectrophotometry, respectively. Cellular oxidative stress was induced by H(2)O(2), the peroxynitrite donor SIN-1 and 4-hydroxynonenal (4-HNE). Cell death was assessed by 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Mitochondrial membrane potential (DCm) was determined in situ by flow cytometry. Endogenous H(2) S synthesis was inhibited by siRNA-mediated knockdown of CSE and CBS and pharmacological inhibitors D,L-propargylglycine and aminoxyacetate, respectively. Exogenous H(2)S was generated using GYY4137. Under basal conditions HACs and MPCs expressed CBS and CSE and synthesized H(2)S in a CBS-dependent manner, whereas CSE expression and activity was induced by treatment of cells with IL-1β, TNF-α, IL-6 or LPS. Oxidative stress-induced cell death was significantly inhibited by GYY4137 treatment but increased by pharmacological inhibition of H(2)S synthesis or by CBS/CSE-siRNA treatment. These data suggest CSE is an inducible source of H(2)S in cultured HACs and MPCs. H(2)S may represent a novel endogenous mechanism of cytoprotection in the inflamed joint, suggesting a potential opportunity for therapeutic intervention.