6 resultados para energy industry
em CentAUR: Central Archive University of Reading - UK
Resumo:
The accurate prediction of storms is vital to the oil and gas sector for the management of their operations. An overview of research exploring the prediction of storms by ensemble prediction systems is presented and its application to the oil and gas sector is discussed. The analysis method used requires larger amounts of data storage and computer processing time than other more conventional analysis methods. To overcome these difficulties eScience techniques have been utilised. These techniques potentially have applications to the oil and gas sector to help incorporate environmental data into their information systems
Resumo:
Building energy consumption(BEC) accounting and assessment is fundamental work for building energy efficiency(BEE) development. In existing Chinese statistical yearbook, there is no specific item for BEC accounting and relevant data are separated and mixed with other industry consumption. Approximate BEC data can be acquired from existing energy statistical yearbook. For BEC assessment, caloric values of different energy carriers are adopted in energy accounting and assessment field. This methodology obtained much useful conclusion for energy efficiency development. While the traditional methodology concerns only on the energy quantity, energy classification issue is omitted. Exergy methodology is put forward to assess BEC. With the new methodology, energy quantity and quality issues are both concerned in BEC assessment. To illustrate the BEC accounting and exergy assessment, a case of Chongqing in 2004 is shown. Based on the exergy analysis, BEC of Chongqing in 2004 accounts for 17.3% of the total energy consumption. This result is quite common to that of traditional methodology. As far as energy supply efficiency is concerned, the difference is highlighted by 0.417 of the exergy methodology to 0.645 of the traditional methodology.
Resumo:
There is growing pressure on the construction industry to deliver energy efficient, sustainable buildings but there is evidence to suggest that, in practice, designs regularly fail to achieve the anticipated levels of in-use energy consumption. One of the key factors behind this discrepancy is the behavior of the building occupants. This paper explores how insights from experimental psychology could potentially be used to reduce the gap between the predicted and actual energy performance of buildings. It demonstrates why traditional methods to engage with the occupants are not always successful and proposes a model for a more holistic approach to this issue. The paper concludes that achieving energy efficiency in buildings is not solely a technological issue and that the construction industry needs to adopt a more user-centred approach.
Resumo:
Commercial kitchens are one of the most profligate users of gas, water and electricity in the UK and can leave a large carbon footprint. It is estimated that the total energy consumption of Britain’s catering industry is in excess of 21,600 million kWh per year. In order to facilitate appropriate energy reduction within licensed restaurants, energy use must be translated into a form that can be compared between kitchens to enable operators to assess how they are improving and to allow rapid identification of facilities which require action. A review of relevant literature is presented and current benchmarking methods are discussed in order to assist in the development and categorisation of benchmarking energy reduction in commercial kitchens. Energy use within UK industry leading brands is discussed for the purpose of benchmarking in terms of factors such as size and output.
Resumo:
Ruminant production is a vital part of food industry but it raises environmental concerns, partly due to the associated methane outputs. Efficient methane mitigation and estimation of emissions from ruminants requires accurate prediction tools. Equations recommended by international organizations or scientific studies have been developed with animals fed conserved forages and concentrates and may be used with caution for grazing cattle. The aim of the current study was to develop prediction equations with animals fed fresh grass in order to be more suitable to pasture-based systems and for animals at lower feeding levels. A study with 25 nonpregnant nonlactating cows fed solely fresh-cut grass at maintenance energy level was performed over two consecutive grazing seasons. Grass of broad feeding quality, due to contrasting harvest dates, maturity, fertilisation and grass varieties, from eight swards was offered. Cows were offered the experimental diets for at least 2 weeks before housed in calorimetric chambers over 3 consecutive days with feed intake measurements and total urine and faeces collections performed daily. Methane emissions were measured over the last 2 days. Prediction models were developed from 100 3-day averaged records. Internal validation of these equations, and those recommended in literature, was performed. The existing in greenhouse gas inventories models under-estimated methane emissions from animals fed fresh-cut grass at maintenance while the new models, using the same predictors, improved prediction accuracy. Error in methane outputs prediction was decreased when grass nutrient, metabolisable energy and digestible organic matter concentrations were added as predictors to equations already containing dry matter or energy intakes, possibly because they explain feed digestibility and the type of energy-supplying nutrients more efficiently. Predictions based on readily available farm-level data, such as liveweight and grass nutrient concentrations were also generated and performed satisfactorily. New models may be recommended for predictions of methane emissions from grazing cattle at maintenance or low feeding levels.