40 resultados para elemental analysis
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three ochre samples (A (orange-red in colour), B (red) and C (purple)) from Clearwell Caves, (Gloucestershire, UK) have been examined using an integrated analytical methodology based on the techniques of IR and diffuse reflectance UV-visible-NIR spectroscopy, X-ray diffraction, elemental analysis by ICP-AES and particle size analysis. It is shown that the chromophore in each case is haematite. The differences in colour may be accounted for by (i) different mineralogical and chemical composition in the case of the orange ochre, where hi,,her levels of dolomite and copper are seen and (ii) an unusual particle size distribution in the case of the purple ochre. When the purple ochre was ground to give the same particle size distribution as the red ochre then the colours of the two samples became indistinguishable. An analysis has now been completed of a range of ochre samples with colours from yellow to purple from the important site of Clearwell Caves. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Three ochre samples (A (orange-red in colour), B (red) and C (purple)) from Clearwell Caves, (Gloucestershire, UK) have been examined using an integrated analytical methodology based on the techniques of IR and diffuse reflectance UV-visible-NIR spectroscopy, X-ray diffraction, elemental analysis by ICP-AES and particle size analysis. It is shown that the chromophore in each case is haematite. The differences in colour may be accounted for by (i) different mineralogical and chemical composition in the case of the orange ochre, where hi,,her levels of dolomite and copper are seen and (ii) an unusual particle size distribution in the case of the purple ochre. When the purple ochre was ground to give the same particle size distribution as the red ochre then the colours of the two samples became indistinguishable. An analysis has now been completed of a range of ochre samples with colours from yellow to purple from the important site of Clearwell Caves. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate changes in trace element concentration in two high resolution sequences of tree rings from central Sweden. Individual annual growth increments from 18002002 to 1930-2002 were sampled from two Scots pine (Pinus sylvestris) trees from the Siljansfors Experimental Forest. The aims of the study were: to test the viability of conventional solution induction ICP-MS as a technique for investigating the multi-elemental chemistry of long tree ring sequences at annual resolution, and, to test this specifically with a view to detecting changes in elemental concentrations of Swedish tree rings contemporary with the major (and relatively proximal) Icelandic eruption of Askja (1875). It was found that despite a time consuming sample preparation process, it was possible to use conventional ICP-MS for multi-elemental analysis of a long sequence of tree rings at annual resolution. Although promising data were produced, no truly conclusive concentration anomaly could be detected in the sequence to indicate the impact of the Askja eruption on environmental chemistry. Overall findings underlined the complexity of the tree/environment interaction and the cautious approach to data interpretation essential for any dendrochemical study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A series of amphiphilic copolymers were synthesized by free-radical copolymerization of N-vinylpyrrolidone (NVP) with vinyl propyl ether (VPE), and the structure of the copolymers was characterized by elemental analysis and gel permeation chromatography. The reactivity of VPE in copolymerization was found to be significantly lower than the reactivity of NVP, which resulted in a decrease of copolymers’ yields and molecular weights with higher content of VPE in the feed mixture. An investigation of the behavior of the copolymers in aqueous solutions at different temperatures by dynamic light scattering revealed the presence of lower critical solution temperature, which depending on the content of VPE ranged within 23−38 °C. Aqueous solutions of these copolymers were studied by fluorescent spectroscopy with pyrene as a polarity probe to reveal the formation of hydrophobic domains. The copolymers were found to be useful for enhancing the solubility of riboflavin in water.
Resumo:
We report the use of transition-metal-exchanged zeolites as media for the catalytic formation and encapsulation of both polyethyne and polypropyne, and computer modeling studies on the composites so formed. Alkyne gas was absorbed into the pores of zeolite Y (Faujasite) exchanged with transition-metal cations [Fe(II), Co(II), Cu(II), Ni(II), and Zn(II)]. Ni(II) and Zn(II) were found to be the most efficient for the production of poly-ynes. These cations were also found to be effective in polymer generation when exchanged in zeolites mordenite and beta. The resulting powdered samples were characterized by FTIR, Raman, diffuse reflectance electronic spectroscopy, TEM, and elemental analysis, revealing, nearly complete loading of the zeolite channels for the majority of the samples. Based on the experimental carbon content, we have derived the percentage of channel filling, and the proportion of the channels containing a single polymer chain for mordenite. Experimentally, the channels for Y are close to complete filling for polyethyne (PE) and polypropyne (PP), and this is also true for polyethyne in mordenite. Computer modeling studies using Cerius2 show that the channels of mordenite can only accept a single polymer chain of PP, in which case these channels are also completely filled.
Resumo:
Mixed ligand complexes: [Co(L)(bipy)] (.) 3H(2)O (1), [Ni(L)(phen)] (.) H2O (2), [Cu(L)(phen)] (.) 3H(2)O (3) and [Zn(L)(bipy)] (.) 3H(2)O (4), where L2- = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H(2)bzimida, hereafter, H,L), bipy = 2,2' bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10(-1) mol dm(-3) (NaNO3), at 25 +/- 1 degrees C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H-1L)(-), M(B)(2+), M(L)(B), M(H-1L)(B)(-), M-2(H-1L)(OH), (B)M(H-1L)M(B)(+), where H-1L3- represents two -COOH and the benzimidazole NI-H deprotonated quadridentate (O-, N, O-, N), or, quinquedentate (O-, N, O-, N, N-) function of the coordinated ligand H,L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)(2+) = (B)M(H-1L)M(B)(+) + H+ is favoured with higher pi-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Delta logK(M) values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of dithiocarbamate ligands based on a pyrrole framework is reported. These ligands self-assemble with zinc(II), nickel(II) and copper(II) to afford neutral, dinuclear metallomacrocycles and trinuclear metallocryptands. The assembled metallo compounds have been characterised by a range of techniques, including H-1 NMR, UV-vis spectroscopy, elemental analysis, mass spectrometry and X-ray crystallography. Some preliminary anion binding studies have also been conducted, using electronic spectroscopy and electrochemistry. The nickel macrocycles showed some affinity for acetate, whereas the copper cryptand showed affinity for benzoate anions. The copper cryptand also exhibited a significant electrochemical response to a range of anions.
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Three heterometallic trinuclear Schiff base complexes, [{GuL(1)(H2O)}(2)Ni(CN)(4)]center dot 4H(2)O (1), [{CuL2(H2O)}(2)Ni(CN)(4)] (2), and [{CuL3(H2O)}(2)Ni(CN)(4)] (3) (HL1 = 7-amino-4-methyl-5-azahept-3-en-2-one, HL2 = 7-methylamino-4-methyl-5-azahept-3-en-2-one, and HL3 = 7-dimethylamino-4-methyl-5-azahept-3-en-2-one), were synthesized. All three complexes were characterized by elemental analysis, IR and UV spectroscopies, and thermal analysis. Two of them (1 and 3) were also characterized by single crystal X-ray crystallography. Complex 1 forms a hydrogen-bonded one-dimensional metal-organic framework that stabilizes a helical water chain into its cavity, but when any of the amine hydrogen atoms of the Schiff base are replaced by methyl groups, as in L 2 and L 3, the water chain, vanishes, showing explicitly the importance of the host-guest H-bonding interactions for the stabilization of a water cluster.
Resumo:
New tri-functional ligands of the type R2NCCCH2SCH2CCNR2 (where R = iso-propyl, n-butyl or iso-butyl) were prepared and characterized. The coordination chemistry of these ligands with uranyl and lanthanum(III) nitrates was studied by using the IR, (HNMR)-H-1 and elemental analysis methods. Structures for the compounds [UO2(NO3)(2)((Pr2NCOCH2SCH2CONPr2)-Pr-i-Pr-i)] [UO2(NO3)(2)((Bu2NCOCH2SCH2CONBu2)-Bu-i-Bu-i)(2)] [La(NO3)(3)((Pr2NCOCH2SCH2CONPr2)-Pr-i-Pr-i)(2)] and [La(NO3)(3)((Bu2NCOCH2SCH2CONBu2)-Bu-i-Bu-i)(2)] were determined by single crystal X-ray diffraction. These structures show that the ligand acts as a bidentate chelating ligand and bonds through both the carbamoyl groups to the uranyl and lanthanum(III) nitrate groups. Solvent extraction studies show that the ligand can extract the uranyl ion from the nitric acid medium but does not show any ability to extract the americium (III) ion. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L-1), (C5H7N2CH2CONBu2)-Bu-i (L-2), C3H3N2CH2CONBu2 (L-3), (C3H3N2CH2CONBu2)-Bu-i (L-4) and C5H7N2CH2CON(C8H17)(2) (L-5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L-1 to L-4 with [UO2(NO3)(2)center dot 6H(2)O], [La(NO3)(3)center dot 6H(2)O] and [Ce(NO3)(3)center dot 6H(2)O] has been evaluated. Structures for the compounds [UO2(NO3)(2) C5H7N2CH2CONBu2] (6) [UO2(NO3)(2) (C5H7N2CHCONBu2)-Bu-i] (7) and [Ce(NO3)(3){C(3)H(3)N(2)CH(2)CON(i)Bu2}(2)] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L-5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(TV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Two new iron thioantimonates, [Fe(en)(3)](2)Sb2S5 (.) 0.55H(2)O (1) and [Fe(en)(3)](2)Sb4S8 (2). were synthesised under solvothermal conditions from the reactions of Sb2S3, FeCl2 and S in the presence of ethylenediamine at 413 and 438 K, respectively. The products were characterised by single-crystal X-ray diffraction, elemental analysis and SQUID magnetometry. Compound 1 is unusual in containing isolated Sb2S54- anions formed from two corner-sharing SbS33- trigonal pyramids. These units are arranged in rippled layers, 4 A apart, parallel to the bc-plane. Octahedrally coordinated [Fe(en)(3)](2+) cations lie in depressions within these anionic layers. In compound (2), repeated corner linking of SbS33- trigonal pyramids generates SbS2- chains, which may be considered as a polymerised form of the Sb2S54- anions in 1. The SbS2- chains are separated by [Fe(en)(3)](2+) cations. In both compounds, there is an extensive network of hydrogen bonds between the nitrogen atoms of the ethylenediamine ligands and the sulfur atoms of the anions and, in the case of 1, the uncoordinated water molecule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The reaction between [Mo(eta(3)-C3H5)(CO)(2)(NCMe)(2)Br] (1) and the ferrocenylamidobenzimidazole ligands FcCO(NH(2)benzim) (L1) and (FcCO)(2)(NHbenzim) (L2) led to a binuclear (2) and a trinuclear (3) Mo-Fe complex, respectively. The single-crystal X-ray structure of [Mo(eta(3)-C3H5)(CO)(2)(L2)Br] [L2 = {[(eta(5)-C5H5)Fe(eta(5)-C5H4CO)](2)(2-NH-benzimidazol-yl)}] shows that L2 is coordinated to the endo Mo(eta(3)-C3H5)(CO)(2) group in a kappa(2)-N,O-bidentate chelating fashion whereas the Mo-II centre displays a pseudooctahedral environment with Br occupying an equatorial position. Complex 2 was formulated as [MO(eta(3)-C3H5)(CO)(2)(L1)Br] on the basis of a combination of spectroscopic data, elemental analysis, conductivity and DFT calculations. L1 acts as a kappa(2)-N,N-bidentate ligand. In both L1 and L2, the HOMOs are mainly localised on iron while the C=O bond(s) contribute to the LUMO(s) and the next highest energy orbitals are Fe-allyl antibonding orbitals. When the ligands bind to Mo(eta(3)-C3H5)(CO)(2)Br, the greatest difference is that Mo becomes the strongest contributor to the HOMO. Electrochemical studies show that, in complex 2, no electronic interaction exists between the two ferrocenyl ligands and that the first electron has been removed from the Mo-II-centred HOMO. (c) Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
A new family of antimony sulfides, incorporating the macrocyclic tetramine 1,4,8,11-tetraazacyclotetradecane ( cyclam), has been prepared by a hydrothermal method. [C10N4H26][Sb4S7] (1), [Ni(C10N4H24)][Sb4S7] (2), and [Co(C10N4H24)](x)[C10N4H26](1-x)[Sb4S7] (0.08 <= x <= 0.74) (3) have been characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetry, and analytical electron microscopy. All three materials possess the same novel three-dimensional Sb4S72- framework, constructed from layers of parallel arrays of Sb4S84- chains stacked at 90 to one another. In 1, doubly protonated macrocyclic cations reside in the channel structure of the antimonysulfide framework. In 2 and 3, the cyclam acts as a ligand, chelating the divalent transition- metal cation. Analytical and X-ray diffraction data indicate that the level of metal incorporation in 2 is effectively complete, whereas in 3, both metalated and nonmetalated forms of the macrocycle coexist within the structure.