29 resultados para electron density ratio

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suprathermal electrons (>70 eV) form a small fraction of the total solar wind electron density but serve as valuable tracers of heliospheric magnetic field topology. Their usefulness as tracers of magnetic loops with both feet rooted on the Sun, however, most likely fades as the loops expand beyond some distance owing to scattering. As a first step toward quantifying that distance, we construct an observationally constrained model for the evolution of the suprathermal electron pitch-angle distributions on open field lines. We begin with a near-Sun isotropic distribution moving antisunward along a Parker spiral magnetic field while conserving magnetic moment, resulting in a field-aligned strahl within a few solar radii. Past this point, the distribution undergoes little evolution with heliocentric distance. We then add constant (with heliocentric distance, energy, and pitch angle) ad-hoc pitch-angle scattering. Close to the Sun, pitch-angle focusing still dominates, again resulting in a narrow strahl. Farther from the Sun, however, pitch-angle scattering dominates because focusing is effectively weakened by the increasing angle between the magnetic field direction and intensity gradient, a result of the spiral field. We determine the amount of scattering required to match Ulysses observations of strahl width in the fast solar wind, providing an important tool for inferring the large-scale properties and topologies of field lines in the interplanetary medium. Although the pitch-angle scattering term is independent of energy, time-of-flight effects in the spiral geometry result in an energy dependence of the strahl width that is in the observed sense although weaker in magnitude.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rh-I-terpyridine complexes have been unambiguously formed for the first time. The 2,21:6',2"-terpyridine (tpy), 4'-chloro-2,2':6',2"-terpyridine (4'-Cl-tpy) and 4'-(tert-butyldimethylsilyl-ortho-carboranyl)-2,2':6',2"-terpyridine (carboranyl-tpy) ligands were used for successful syntheses and characterisation of the corresponding Rh-I complexes with halide coligands, [Rh(X)(4'-Y-terpyridine)] (X = Cl, Y = H, Cl, carboranyl; X = Br, Y = H). All four neutral Rh-tpy complexes are square planar, with Rh-X bonds in the plane of the 4'-Y-terpyridine ligands. Full characterisation of these dark blue, highly air-sensitive compounds was hampered by their poor solubility in various organic solvents. This is mainly due to the formation of pi-stacked aggregates, as evidenced by the crystal structure of [Rh(Cl)(tpy)]; in addition, [Rh(Cl)(carboranyl-tpy)] merely forms discrete dimers. The (bonding) properties of the novel Rh-I-terpyridine complexes have been studied with single-crystal X-ray diffraction, (time-dependent) density functional theoretical (DFT) calculations, far-infrared spectroscopy, electronic absorption spectroscopy and cyclic voltammetry. From DFT calculations, the HOMO of the studied Rh-I-terpyridine complexes involves predominantly the metal centre, while the LUMO resides on the terpyridine ligand. Absorption bands of the studied complexes in the visible region (400-900 nm) can be assigned to MLCT and MLCT/XLCT transitions. The relatively low oxidation potentials of [Rh(X)(tpy)] (X = Cl, Br) point to a high electron density on the metal centre. This makes the Rh-I-terpyridine complexes strongly nucleophilic and (potentially) highly reactive towards various (small) substrate molecules containing carbon-halide bonds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

UV–Vis absorption spectra of one-electron reduction products and 3MLCT excited states of [ReICl(CO)3- (N,N)] (N,N = 2,20-bipyridine, bpy; 1,10-phenanthroline, phen) have been measured by low-temperature spectroelectrochemistry and UV–Vis transient absorption spectroscopy, respectively, and assigned by open-shell TD-DFT calculations. The characters of the electronic transitions are visualized and analyzed using electron density redistribution maps. It follows that reduced and excited states can be approximately formulated as [ReICl(CO)3(N,Nÿ)]ÿ and ⁄[ReIICl(CO)3(N,Nÿ)], respectively. UV–Vis spectra of the reduced complexes are dominated by IL transitions, plus weaker MLCT contributions. Excited-state spectra show an intense band in the UV region of 50% IL origin mixed with LMCT (bpy, 373 nm) or MLCT (phen, 307 nm) excitations. Because of the significant IL contribution, this spectral feature is akin to the principal IL band of the anions. In contrast, the excited-state visible spectral pattern arises from predominantly LMCT transitions, any resemblance with the reduced-state visible spectra being coincidental. The Re complexes studied herein are representatives of a broad class of metal a-diimines, for which similar spectroscopic behavior can be expected.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new method to determine mesospheric electron densities from partially reflected medium frequency radar pulses. The technique uses an optimal estimation inverse method and retrieves both an electron density profile and a gradient electron density profile. As well as accounting for the absorption of the two magnetoionic modes formed by ionospheric birefringence of each radar pulse, the forward model of the retrieval parameterises possible Fresnel scatter of each mode by fine electronic structure, phase changes of each mode due to Faraday rotation and the dependence of the amplitudes of the backscattered modes upon pulse width. Validation results indicate that known profiles can be retrieved and that χ2 tests upon retrieval parameters satisfy validity criteria. Application to measurements shows that retrieved electron density profiles are consistent with accepted ideas about seasonal variability of electron densities and their dependence upon nitric oxide production and transport.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a mechanism to explain suggested links between seismic activity and ionospheric changes detected overhead. Specifically, we explain changes in the natural extremely low-frequency (ELF) radio noise recently observed in the topside ionosphere aboard the DEMETER satellite at night, before major earthquakes. Our mechanism utilises increased electrical conductivity of surface layer air before a major earthquake, which reduces the surface-ionosphere electrical resistance. This increases the vertical fair weather current, and (to maintain continuity of electron flow) lowers the ionosphere. Magnitudes of crucial parameters are estimated and found to be consistent with observations. Natural variability in ionospheric and atmospheric electrical properties is evaluated, and may be overcome using a hybrid detection approach. Suggested experiments to investigate the mechanism involve measuring the cut-off frequency of ELF “tweeks”, the amplitude and phase of very low frequency radio waves in the Earth–ionosphere waveguide, or medium frequency radar, incoherent scatter or rocket studies of the lower ionospheric electron density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

If the potential field due to the nuclei in the methane molecule is expanded in terms of a set of spherical harmonics about the carbon nucleus, only the terms involving s, f, and higher harmonic functions differ from zero in the equilibrium configuration. Wave functions have been calculated for the equilibrium configuration, first including only the spherically symmetric s term in the potential, and secondly including both the s and the f terms. In the first calculation the complete Hartree-Fock S.C.F. wave functions were determined; in the second calculation a variation method was used to determine the best form of the wave function involving f harmonics. The resulting wave functions and electron density functions are presented and discussed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In young pollen grains of Datura innoxia, a wall of the usual hemispherical type separates the 2 gametophytic cells initially and, in the electron microscope, appears as an electron-translucent matrix which is contiguous with the intine. Before detachment of the generative cell from the intine, the matrix decreases in thickness and in places is dispersed altogether leaving the plasmalemmae on either side of it in close apposition. A particularly prominent zone, triangular in profile, is left where the wall joins with the intine. After detachment of the cell, remnants of the matrix can be seen distributed irregularly around the cell and it is supposed that these are partly derived from material in the triangular zone as the cell is drawn away from the intine. The wall residues persist throughout the maturation phase of the pollen and are considered to be either callose resulting from incomplete digestion of the initial wall, or some other polysaccharide material which is unevenly laid down along the wall and concentrated at the junction with the intine. In pollen induced into embryogenesis by anther culture, wall material is also distributed irregularly around the detached cell in a series of discrete zones, but these are more extensive than in vivo, closer together and in many instances highly dilated. The wall profiles thus have a beaded appearance, the 'beads' being connected together by short links of the 2 apposed plasmalemmae. The contents of the swollen zones have a similar electron density to that of the matrix in vivo but also show traces of a fibrillar component. It is postulated that this unusual swelling is a prelude to dispersal of the wall by disruption of the plasmalemmal links and to the establishment of cytoplasmic continuity between the 2 cells. The significance of such binucleate pollen grains in the formation of non-haploid embryos is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrastructural features of embryogenic pollen in Datura innoxia are described, just prior to, during, and after completion of the first division of the presumptive vegetative cell. In anther cultures initiated towards the end of the microspore phase and incubated at 28 degrees C in darkness, the spores divide within 24 h and show features consistent with those of dividing spores in vivo. Cytokinesis is also normal in most of the spores and the gametophytic cell-plate curves round the presumptive generative nucleus in the usual highly ordered way. Further differentiation of the 2 gametophytic cells does not take place and the pollen either switches to embryogenesis or degenerates. After 48-72 h, the remaining viable pollen shows the vegetative cell in division. The cell, which has a large vacuole and thin layer of parietal cytoplasm carried over from the microspore, divides consistently in a plane parallel to the microspore division. The dividing wall follows a less-ordered course than the gametophytic wall and usually traverses the vacuole, small portions of which are incorporated into the daughter cell adjacent to the generative cell. The only structural changes in the vegetative cell associated with the change in programme appear to be an increase in electron density of both plastids and mitochondria and deposition of an electron-dense material (possibly lipid) on the tonoplast. The generative cell is attached to the intine when the vegetative cell divides. Ribosomal density increases in the generative cell and exceeds that in the vegetative cell. A thin electron-dense layer also appears in the generative-cell wall. It is concluded that embryogenesis commences as soon as the 2 gametophytic cells are laid down. Gene activity associated with postmitotic synthesis of RNA and protein in the vegetative cell is switched off. The data are discussed in relation to the first division of the embryogenic vegetative cells in Nicotiana tabacum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleophilic attack of (triphenylphosphonio) cyclopentadienide on the dichlorodiazomethane-tungsten complex trans[ BrW(dppe)(2)(N2CCl2)]PF6 [dppe is 1,2-bis(diphenylphosphino) ethane] results in C-C bond formation and affords the title compound, trans-[W(C24H18ClN2P)Br(C26H24P2)(2)]PF6 center dot 0.6CH(2)Cl(2). This complex, bis[1,2- bis(diphenylphosphino)ethane] bromido{chloro[3-(triphenylphosphonio) cyclopentadienylidene] diazomethanediido} tungsten hexafluorophosphate dichloromethane 0.6-solvate, contains the previously unknown ligand chloro[3-(triphenylphosphonio) cyclopentadienylidene] diazomethane. Evidence from bond lengths and torsion angles indicates significant through-ligand delocalization of electron density from tungsten to the nominally cationic phosphorus(V) centre. This structural analysis clearly demonstrates that the tungsten-dinitrogen unit is a powerful pi-electron donor with the ability to transfer electron density from the metal to a distant acceptor centre through an extended conjugated ligand system. As a consequence, complexes of this type could have potential applications as nonlinear optical materials and molecular semiconductors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray reflectivity (XR) and grazing incidence X-ray diffraction (GIXD) have been used to examine an oxyethylene-b-oxybutylene (E23B8) copolymer film at the air-water interface. The XR data were fitted using both a one- and a two-layer model that outputted the film thickness, roughness, and electron density. The best fit to the experimental data was obtained using a two-layer model (representing the oxyethylene and oxybutylene blocks, respectively), which showed a rapid thickening of the copolymer film at pressures above 7 mN/m. The large roughness values found indicate a significant degree of intermixing between the blocks and back up the GIXD data, which showed no long range lateral ordering within the layer. It was found from the electron density model results that there is a large film densification at 7 mN/m, possibly suggesting conformational changes within the film, even though no such change occurs on the pressure-area isotherm at the same surface pressure.