5 resultados para electrolytic tanks
em CentAUR: Central Archive University of Reading - UK
Resumo:
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by U-238 and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (<= 8.8 Bq/g) of U-238 Were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (<= 11 Bq/g) of Ra-226 were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A survey was carried out on 55 commercial dairy farms located in the South of Chile during 1995-97. A questionnaire was developed to obtain informed estimates of dairy effluent management on those farms. Information was analysed on an annual basis using a computer spreadsheet linking all the parameters surveyed. In addition, slurry samples were taken for analysis of dry matter content (DM). Herd size varied between 50 and 800 cows per farm. A large proportion of the total volume of effluents produced came from rainfall (46%), dirty water accounted for 29% with only 25% from cow's faeces and urine. The large volume of effluents produced resulted in a reduced storage capacity (on average of 2 months) or more frequent and higher application rates to the field. Only 37% of the farmers knew the application rates of manure and there was a wide range in the quantity used per year (12 m(3)/ha to 300 m(3)/ha). Dairy effluents were applied mainly on grass (71%) throughout the year but, mostly concentrated during the winter and spring time using only surface irrigation system. The total solids contents of effluents was very low, with 62% of the samples being <4% DM. This reflected the large volumes of clean water that the storage tanks received. The information collected has identified problems in effluent management in Chilean dairy farms where research and technology transfer will be necessary to avoid pollution problems.
Resumo:
Many photovoltaic inverter designs make use of a buck based switched mode power supply (SMPS) to produce a rectified sinusoidal waveform. This waveform is then unfolded by a low frequency switching structure to produce a fully sinusoidal waveform. The Cuk SMPS could offer advantages over the buck in such applications. Unfortunately the Cuk converter is considered to be difficult to control using classical methods. Correct closed loop design is essential for stable operation of Cuk converters. Due to these stability issues, Cuk converter based designs often require stiff low bandwidth control loops. In order to achieve this stable closed loop performance, traditional designs invariably need large, unreliable electrolytic capacitors. In this paper, an inverter with a sliding mode control approach is presented which enables the designer to make use of the Cuk converters advantages, while ameliorating control difficulties. This control method allows the selection of passive components based predominantly on ripple and reliability specifications while requiring only one state reference signal. This allows much smaller, more reliable non-electrolytic capacitors to be used. A prototype inverter has been constructed and results obtained which demonstrate the design flexibility of the Cuk topology when coupled with sliding mode control.
Resumo:
Commisssioned by Frieze Art for the Frieze Sculpture Park The project presents the image of a sculpture as a sculpture, installed in the form of a large scale digital print on vinyl stretched over a 14 x 28ft (4.2 x 8.4m) stretcher supported by a scaffolding structure. The image itself depicts a futuristic public sculpture, an ‘impossible’ artwork, referencing Ballard’s descriptions in his book ‘Vermillion Sands’. The work also draws upon examples of rococo ornamentation and the compositional conventions of ‘images of sculpture’ (in art magazines, catalogues, publicity photos) including examples sited in Regents park in previous years. Technical details: The image is printed on vinyl, stretched over a 14 x 28ft (4.2 x 8.4m) wooden stretcher and fixed to a deep buttressed scaffold 8m long by 6.23 deep with IBC water tanks on the back edge as kentledge (4 x I tonne IVC water containers - 1 per bay). The structure is constructed from clean silver Layher system scaffold and wrapped by a dense black mesh netting.
Resumo:
This paper presents the development of an export coefficient model to characterise the rates and sources of P export from land to water in four reservoir systems located in a semi-arid rural region in southern of Portugal. The model was developed to enable effective management of these important water resource systems under the EU Water Framework Directive. This is the first time such an approach has been fully adapted for the semi-arid systems typical of Mediterranean Europe. The sources of P loading delivered to each reservoir from its catchment were determined and scenario analysis was undertaken to predict the likely impact of catchment management strategies on the scale of rate of P loading delivered to each water body from its catchment. The results indicate the importance of farming and sewage treatment works/collective septic tanks discharges as the main contributors to the total diffuse and point source P loading delivered to the reservoirs, respectively. A reduction in the total P loading for all study areas would require control of farming practices and more efficient removal of P from human wastes prior to discharge to surface waters. The scenario analysis indicates a strategy based solely on reducing the agricultural P surplus may result in only a slow improvement in water quality, which would be unlikely to support the generation of good ecological status in reservoirs. The model application indicates that a reduction of P-inputs to the reservoirs should first focus on reducing P loading from sewage effluent discharges through the introduction of tertiary treatment (P-stripping) in all major residential areas. The fully calibrated export coefficient modelling approach transferred well to semi-arid regions, with the only significant limitation being the availability of suitable input data to drive the model. Further studies using this approach in semi-arid catchments are now needed to increase the knowledge of nutrient export behaviours in semi-arid regions.