3 resultados para electrodynamic ion-trap

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liquid chromatography-mass spectrometry (LC-MS) datasets can be compared or combined following chromatographic alignment. Here we describe a simple solution to the specific problem of aligning one LC-MS dataset and one LC-MS/MS dataset, acquired on separate instruments from an enzymatic digest of a protein mixture, using feature extraction and a genetic algorithm. First, the LC-MS dataset is searched within a few ppm of the calculated theoretical masses of peptides confidently identified by LC-MS/MS. A piecewise linear function is then fitted to these matched peptides using a genetic algorithm with a fitness function that is insensitive to incorrect matches but sufficiently flexible to adapt to the discrete shifts common when comparing LC datasets. We demonstrate the utility of this method by aligning ion trap LC-MS/MS data with accurate LC-MS data from an FTICR mass spectrometer and show how hybrid datasets can improve peptide and protein identification by combining the speed of the ion trap with the mass accuracy of the FTICR, similar to using a hybrid ion trap-FTICR instrument. We also show that the high resolving power of FTICR can improve precision and linear dynamic range in quantitative proteomics. The alignment software, msalign, is freely available as open source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are several advantages of using metabolic labeling in quantitative proteomics. The early pooling of samples compared to post-labeling methods eliminates errors from different sample processing, protein extraction and enzymatic digestion. Metabolic labeling is also highly efficient and relatively inexpensive compared to commercial labeling reagents. However, methods for multiplexed quantitation in the MS-domain (or ‘non-isobaric’ methods), suffer from signal dilution at higher degrees of multiplexing, as the MS/MS signal for peptide identification is lower given the same amount of peptide loaded onto the column or injected into the mass spectrometer. This may partly be overcome by mixing the samples at non-uniform ratios, for instance by increasing the fraction of unlabeled proteins. We have developed an algorithm for arbitrary degrees of nonisobaric multiplexing for relative protein abundance measurements. We have used metabolic labeling with different levels of 15N, but the algorithm is in principle applicable to any isotope or combination of isotopes. Ion trap mass spectrometers are fast and suitable for LC-MS/MS and peptide identification. However, they cannot resolve overlapping isotopic envelopes from different peptides, which makes them less suitable for MS-based quantitation. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry is less suitable for LC-MS/MS, but provides the resolving power required to resolve overlapping isotopic envelopes. We therefore combined ion trap LC-MS/MS for peptide identification with FTICR LC-MS for quantitation using chromatographic alignment. We applied the method in a heat shock study in a plant model system (A. thaliana) and compared the results with gene expression data from similar experiments in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the rapid development of proteomics, a number of different methods appeared for the basic task of protein identification. We made a simple comparison between a common liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow using an ion trap mass spectrometer and a combined LC-MS and LC-MS/MS method using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and accurate peptide masses. To compare the two methods for protein identification, we grew and extracted proteins from E. coli using established protocols. Cystines were reduced and alkylated, and proteins digested by trypsin. The resulting peptide mixtures were separated by reversed-phase liquid chromatography using a 4 h gradient from 0 to 50% acetonitrile over a C18 reversed-phase column. The LC separation was coupled on-line to either a Bruker Esquire HCT ion trap or a Bruker 7 tesla APEX-Qe Qh-FTICR hybrid mass spectrometer. Data-dependent Qh-FTICR-MS/MS spectra were acquired using the quadrupole mass filter and collisionally induced dissociation into the external hexapole trap. Proteins were in both schemes identified by Mascot MS/MS ion searches and the peptides identified from these proteins in the FTICR MS/MS data were used for automatic internal calibration of the FTICR-MS data, together with ambient polydimethylcyclosiloxane ions.