22 resultados para electrochemical studies

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of oxorhenium (V) complexes of newly designed pyridylthioazophenolate ligands has been synthesized and isolated in pure form. The solid state structure of an organic compound (HL1) has been established by X-ray crystallography. The molecular structure observed in the solid state is that the two molecules of the ligand (HL1) in the asymmetric unit have similar geometries, except for the orientation of the pyridine ring. This series of organic moieties acts as tetradentate monobasic NSNO donor chelators in oxorhenium(V) complexes which has been characterized by elemental analyses, IR, H-1-NMR, UV-Vis. The complexes are 1: 1 electrolytes in nature in MeOH solution, the counter anion being ClO4). The electrochemical studies of the [(ReO)-O-V(L)Cl]ClO4 complexes in MeCN using TBAP as supporting electrolyte exhibit quasi-reversible voltammogram showing one-electron couple for [(ReO)-O-VI(L)Cl](2+)-[(ReO)-O-V(L)Cl](+) in the 1.11-1.29 V vs SCE range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acetylide-based bridging ligands have been widely used in the preparation of complexes that display a degree of electronic interaction between metal-based redox groups located at the ligand termini. The electrochemical response of these systems has been selectively reviewed, with a focus on the variation in properties that accompany changes in the structure of the bridging ligand and the nature of the metal groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of hexadentate ligands, H2Lm (m = 1−4), [1H-pyrrol-2-ylmethylene]{2-[2-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)ethoxy]phenyl}amine (H2L1), [1H-pyrrol-2-ylmethylene]{2-[4-(2-{[1H-pyrrol-2-ylmethylene]amino}phenoxy)butoxy]phenyl}amine (H2L2), [1H-pyrrol-2-ylmethylene][2-({2-[(2-{[1H-pyrrol-2-ylmethylene]amino}phenyl)thio]ethyl}thio)phenyl]amine (H2L3) and [1H-pyrrol-2-ylmethylene][2-({4-[(2-{[1H-pyrrol-2-lmethylene]amino}phenyl)thio]butyl}thio) phenyl]amine (H2L4) were prepared by condensation reaction of pyrrol-2-carboxaldehyde with {2-[2-(2-aminophenoxy)ethoxy]phenyl}amine, {2-[4-(2-aminophenoxy)butoxy]phenyl}amine, [2-({2-[(2-aminophenyl)thio]ethyl}thio)phenyl]amine and [2-({4-[(2-aminophenyl)thio]butyl}thio)phenyl]amine respectively. Reaction of these ligands with nickel(II) and copper(II) acetate gave complexes of the form MLm (m = 1−4), and the synthesized ligands and their complexes have been characterized by a variety of physico-chemical techniques. The solid and solution states investigations show that the complexes are neutral. The molecular structures of NiL3 and CuL2, which have been determined by single crystal X-ray diffraction, indicate that the NiL3 complex has a distorted octahedral coordination environment around the metal while the CuL2 complex has a seesaw coordination geometry. DFT calculations were used to analyse the electronic structure and simulation of the electronic absorption spectrum of the CuL2 complex using TDDFT gives results that are consistent with the measured spectroscopic behavior of the complex. Cyclic voltammetry indicates that all copper complexes are electrochemically inactive but the nickel complexes with softer thioethers are more easily oxidized than their oxygen analogs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A family of ruthenium (III) complexes of tetradentate monobasic NSNO donor chelators (HL) have been synthesized and isolated in their pure form. On chromatographic separation, trans-dichloro and cis-dichloro ruthenium (111) complexes of pyridylthioazophenolates are eluted using 19:1 and 7:3 (v/v) DCM-MeOH mixtures, respectively. Both cis and trans isomers of the dark brown colored ruthenium (111) complexes, having the general formula of [Ru(L)Cl-2], have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. The magnetic moments of both the cis- and trans-[Ru(L)Cl-2] complexes are in the range of 1.71-1.79 BM. One of the complexes, trans-[Ru(L1)Cl-2] (2a), has been subjected to single-crystal X-ray analysis which confirms that the chlorines are in mutually trans positions in the molecule. The EPR spectra of the cis-[Ru(L)Cl-2] complexes (1) in DMF are consistent with the fact that the complexes are low-spin octahedral with one unpaired electron having three different g values (g(x) not equal g(y) not equal g(z)) complexes are monomeric with an octahedral coordination sphere. The electrochemical studies of [Ru(L)Cl,] in DMF show a quasi-reversible voltammogram. The reduction potentials for the cis-isomers are comparatively lower than those of the corresponding trans isomers. On reaction with the bidentate bipyridyl ligand in the presence of AgNO3, the cis-[Ru(L)Cl-2] complexes (1) produce a series of complexes with the general formula [Ru(L)(bpy)(2)](PF6)(2) (3). which have also been characterized by elemental analyses, spectroscopic and other physico-chemical tools. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis of a range of ditopic polyferrocenyl zinc(II) dithiocarbamate macrocyclic receptors containing ferrocene groups on the macrocycle's periphery and/or as part of the cyclic cavity is reported. The assemblies have been characterised by a range of spectroscopic techniques, electrochemical studies and in two cases by X-ray structure determination. The ability of these host systems to bind and sense electrochemically anionic guest species, isonicotinate and benzoate, and neutral 4-picoline guest was examined by H-1 NMR and cyclic voltammetric titration studies. The strongest association was found between the isonicotinate anion and a dinuclear zinc(II) receptor whose macrocyclic cavity is of complementary size to complex this bidentate guest species in a cooperative manner. Cyclic voltammetric studies demonstrated that all receptors can electrochemically sense the binding of isonicotinate and benzoate via significant cathodic perturbations of the respective ferrocene redox couple.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reaction of [Co(eta(5)-C5H5)(CO)(2)], 1, with 1,1'-bis(diphenylphosphino)ferrocene (dppf) yields the new trinuclear complex [Co(eta(5)-C5H5)(CO)](2)(mu-dppf), 2, which was structurally characterised by single crystal X-ray diffraction and showed two Co(eta(5)-C5H5)(CO) moieties covalently linked by a dppf bridge. Electrochemical studies in dichloromethane revealed that both Co(I) and Fe(II) in the precursors were oxidized to Co(II)/Co(III) and Fe(III), respectively. On the other hand, in 2 the two first oxidation waves were assigned to Co, the Fe(II) centre requiring a higher potential than in free dppf. DFT calculations showed that the HOMOs of 2 were localised in the Co fragments, owing to the destabilisation of the Co(eta(5)-C5H5)(CO) orbitals after binding dppf.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C CC6F5)(dppe)Cp'[Cp' = Cp (2); Cp* (3)], which are related to the known compound Ru(C CC6F5)(PPh3)(2)Cp (1). Treatment of Me3SiC CC6F5 with Pt-2(mu-dppm)(2)Cl-2 in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt-2(mu-dppm)(2)(C CC6F5)(2) (4). The Pd(0)/Cu(I)-catalysed reactions between Au(C CC6F5)(PPh3) and Mo( CBr)(CO)(2) Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co-3(mu(3)-CBr)(mu-dppm)(CO)(7) or IC CFc [Fc = (eta(5)-C5H4)FeCp] afford Mo( CC CC6F5)(CO)(2)Tp* (5), Co-3(mu 3-CC CC6F5)(mu-dppm)(CO)(7) (6) and FcC CC CC6F5 (7), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC C}(2)C6F4 [(PP)Cp'=(PPh3)(2)Cp (8); (dppe)Cp (9); (dppe)Cp* (10)] are prepared from 1,4-(Me3SiC C)(2)C6F4 in a manner similar to that described for the monoruthenium complexes 1-3. The non-fluorinated complexes 1,4-{Cp'(PP)RuC C}(2)C6H4 [(PP)Cp' = (PPh3)(2)Cp (11); ( dppe) Cp (12); ( dppe) Cp* (13)], prepared for comparison, are obtained from 1,4-(Me3SiC C)(2)C6H4. Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes 2-3 and 8-13, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes 1, 2, 3, 6 and 10.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The syntheses of several ethynyl-gold(I) phosphine substituted tolans (1,2-diaryl acetylenes) of general form [Au(C=CC6H4C=CC6H4X)(PPh3)] are described [X = Me (2a), OMe (2b), CO2Me (2c), NO2 (2d), CN (2e)]. These complexes react readily with [Ru-3(CO) 10(mu-dppm)] to give the heterometallic clusters [Ru3(mu-AuPPh3)(mu-eta(1), eta(2)-C2C6H4C, CC6H4X)(CO)(7)(mu-dppm)] (3a-e). The crystallographically determined molecular structures of 2b, 2d, 2e and 3a-e are reported here, that of 2a having been described on a previous occasion. Structural, spectroscopic and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps. (C) 2007 Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction between [Mo(eta(3)-C3H5)(CO)(2)(NCMe)(2)Br] (1) and the ferrocenylamidobenzimidazole ligands FcCO(NH(2)benzim) (L1) and (FcCO)(2)(NHbenzim) (L2) led to a binuclear (2) and a trinuclear (3) Mo-Fe complex, respectively. The single-crystal X-ray structure of [Mo(eta(3)-C3H5)(CO)(2)(L2)Br] [L2 = {[(eta(5)-C5H5)Fe(eta(5)-C5H4CO)](2)(2-NH-benzimidazol-yl)}] shows that L2 is coordinated to the endo Mo(eta(3)-C3H5)(CO)(2) group in a kappa(2)-N,O-bidentate chelating fashion whereas the Mo-II centre displays a pseudooctahedral environment with Br occupying an equatorial position. Complex 2 was formulated as [MO(eta(3)-C3H5)(CO)(2)(L1)Br] on the basis of a combination of spectroscopic data, elemental analysis, conductivity and DFT calculations. L1 acts as a kappa(2)-N,N-bidentate ligand. In both L1 and L2, the HOMOs are mainly localised on iron while the C=O bond(s) contribute to the LUMO(s) and the next highest energy orbitals are Fe-allyl antibonding orbitals. When the ligands bind to Mo(eta(3)-C3H5)(CO)(2)Br, the greatest difference is that Mo becomes the strongest contributor to the HOMO. Electrochemical studies show that, in complex 2, no electronic interaction exists between the two ferrocenyl ligands and that the first electron has been removed from the Mo-II-centred HOMO. (c) Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three copper(II) complexes, [CuL1], [CuL2] and [CuL3] where L-1, L-2 and L-3 are the tetradentate di-Schiff-base ligands prepared by the condensation of acetylacetone and appropriate diamines (e.g. 1,2-diaminoethane, 1,2-diaminopropane and 1,3-diaminopropane, respectively) in 2:1 ratios, have been prepared. These complexes act as host molecules and include a guest sodium ion by coordinating through the oxygen atoms to result in corresponding new trinuclear complexes, [(CuL1)(2)Na(ClO4)(H2O)][CuL1], [(CuL2)(2)Na(ClO4)(H2O)] (2) and [(CuL3)(2)Na(ClO4)(H2O)] (3) when crystallized from methanol solution containing sodium perchlorate. All three complexes have been characterized by single crystal X-ray crystallography. In all the complexes, the sodium cation has a six-coordinate distorted octahedral environment being bonded to four oxygen atoms from two Schiff-base complexes of Cu(II) in addition to a perchlorate anion and a water molecule. The copper atoms are four coordinate in a square planar environment being bonded to two oxygen atoms and two nitrogen atoms of the Schiff-base ligand. The variable temperature susceptibilities for complexes 1-3 were measured over the range 2-300 K. The isotropic Hamiltonian, H = g(1)beta HS1 + g(2)beta HS2 + J(12)S(1)S(2) + g(3)beta HS3 for complex 1 and H = g(1)beta HS1 + g2 beta HS2 +J(12)S(1)S(2) for complexes 2 and 3 has been used to interpret the magnetic data. The best fit parameters obtained are: g(1) = g(2) = 2.07(0), J = - 1.09(1) cm(-1) for complex 1, g(1) = g(2) = 2.06(0), J = -0.55(1) cm(-1) for complex 2 and g1 = g2 = 2.07(0).J = -0.80(1) cm(-1) for 3. Electrochemical studies displayed an irreversible Cu(II)/Cu(I) one-electron reduction process. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two Schiff bases, HL1 and HL2 have been prepared by the condensation of N-methyl-1,3-propanediamine (mpn) with salicylaldehyde and 1-benzoylacetone (Hbn) respectively. HL1 on reaction with Cu(ClO4)(2)center dot 6H(2)O in methanol produced a trinuclear Cu-II complex, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O center dot 0.5CH(2)Cl(2) (1) but HL2 underwent hydrolysis under similar reaction conditions to result in a ternary Cu-II complex, [Cu(bn)(mpn)ClO4]. Both complexes have been characterised by single-crystal X-ray analyses, IR and UV-Vis spectroscopy and electrochemical studies. The partial cubane core [Cu3O4] of 1 consists of a central mu(3)-OH and three peripheral phenoxo bridges from the Schiff base. All three copper atoms of the trinuclear unit are five-coordinate with a distorted square-pyramidal geometry. The ternary complex 2 is mononuclear with the square-pyramidal Cu-II coordinated by a chelating bidentate diamine (mpn) and a benzoylacetonate (bn) moiety in the equatorial plane and one of the oxygen atoms of perchlorate in an axial position. The results show that the Schiff base (HL2) derived from 1-benzoylacetone is more prone to hydrolysis than that from salicylaldehyde (HL1). Magnetic measurements of 1 have been performed in the 1.8-300 K temperature range. The experimental data clearly indicate antiferromagnetism in the complex. The best-fit parameters for complex 1 are g = 2.18(1) and J = -15.4(2) cm(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several cis-dioxomolybdenum complexes of two tridentate ONS chelating ligands H2L1 and H2L2 ( obtained by condensation of S-benzyl and S-methyl dithiocarbazates with 2-hydroxyacetophenone) have been prepared and characterized. Complexes 1 and 2 are found to be of the form MoO2 (CH3OH)L-1.CH3OH and MoO2L, respectively, (where L2-=dianion of H2L1 and H2L2). The sixth coordination site of the complexes acts as a binding site for various neutral monodentate Lewis bases, B, forming complexes 3 - 10 of the type MoO2LB (where B=gamma-picoline, imidazole, thiophene, THF). The complexes were characterized by elemental analyses, various spectroscopic techniques, ( UV-Vis, IR and H-1 NMR), measurement of magnetic susceptibility at room temperature, molar conductivity in solution and by cyclic voltammetry. Two of the complexes MoO2(CH3OH)L-1.CH3OH (1) and MoO2L1(imz) (5) were structurally characterized by single crystal X-ray diffraction. Oxo abstruction reactions of 1 and 5 led to formation of oxomolybdenum(IV) complex of the MoOL type.